Abstract
A test set of N,N,N’,N’-tetrasubstituted p-phenylenediamines are experimentally explored using ESR (electron spin resonance) spectroscopy and analysed from a computational standpoint thereafter. This computational study aims to further aid structural characterisation by comparing experimental ESR hyperfine coupling constants (hfccs) with computed values calculated using ESR-optimised “J-style” basis sets (6-31G(d,p)-J, 6-31G(d,p)-J, 6-311++G(d,p)-J, pcJ-1, pcJ-2 and cc-pVTZ-J) and hybrid-DFT functionals (B3LYP, PBE0, TPSSh, ω
B97XD) as well as MP2. PBE0/6-31g(d,p)-J with a polarised continuum solvation model (PCM) correlated best with the experiment, giving an R2 value of 0.8926. A total of 98% of couplings were deemed satisfactory, with five couplings observed as outlier results, thus degrading correlation values significantly. A higher-level electronic structure method, namely MP2, was sought to improve outlier couplings, but only a minority of couples showed improvement, whilst the remaining majority of couplings were negatively degraded.
B97XD) as well as MP2. PBE0/6-31g(d,p)-J with a polarised continuum solvation model (PCM) correlated best with the experiment, giving an R2 value of 0.8926. A total of 98% of couplings were deemed satisfactory, with five couplings observed as outlier results, thus degrading correlation values significantly. A higher-level electronic structure method, namely MP2, was sought to improve outlier couplings, but only a minority of couples showed improvement, whilst the remaining majority of couplings were negatively degraded.
Originalsprog | Engelsk |
---|---|
Artikelnummer | 3447 |
Tidsskrift | International Journal of Molecular Sciences (Online) |
Vol/bind | 24 |
Udgave nummer | 4 |
Antal sider | 17 |
ISSN | 1661-6596 |
DOI | |
Status | Udgivet - 8 feb. 2023 |