A complete Bernstein function related to the fractal dimension of Pascal's pyramid modulo a prime

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Abstract

Let fr(x)=log(1+rx)/log(1+x) for x>0. We prove that fr is a complete Bernstein function for 0≤r≤1 and a Stieltjes function for 1≤r. This answers a conjecture of David Bradley that fr is a Bernstein function when 0≤r≤1.

OriginalsprogEngelsk
Artikelnummer125601
TidsskriftExpositiones Mathematicae
ISSN0723-0869
DOI
StatusE-pub ahead of print - 2024

Bibliografisk note

Publisher Copyright:
© 2024 The Author(s)

Citationsformater