A genome-wide gene-environment interaction study of breast cancer risk for women of European ancestry

Pooja Middha, Xiaoliang Wang, Sabine Behrens, Manjeet K. Bolla, Qin Wang, Joe Dennis, Kyriaki Michailidou, Thomas U. Ahearn, Irene L. Andrulis, Hoda Anton-Culver, Volker Arndt, Kristan J. Aronson, Paul L. Auer, Annelie Augustinsson, Thaïs Baert, Laura E.Beane Freeman, Heiko Becher, Matthias W. Beckmann, Javier Benitez, Stig E. BojesenHiltrud Brauch, Hermann Brenner, Angela Brooks-Wilson, Daniele Campa, Federico Canzian, Angel Carracedo, Jose E. Castelao, Stephen J. Chanock, Georgia Chenevix-Trench, Emilie Cordina-Duverger, Fergus J. Couch, Angela Cox, Simon S. Cross, Kamila Czene, Laure Dossus, Pierre Antoine Dugué, A. Heather Eliassen, Mikael Eriksson, D. Gareth Evans, Peter A. Fasching, Jonine D. Figueroa, Olivia Fletcher, Henrik Flyger, Marike Gabrielson, Manuela Gago-Dominguez, Graham G. Giles, Anna González-Neira, Felix Grassmann, Sune F. Nielsen, Børge G. Nordestgaard, CTS Consortium, ABCTB Investigators, kConFab Investigators

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

2 Citationer (Scopus)
15 Downloads (Pure)

Abstract

Background
Genome-wide studies of gene–environment interactions (G×E) may identify variants associated with disease risk in conjunction with lifestyle/environmental exposures. We conducted a genome-wide G×E analysis of ~ 7.6 million common variants and seven lifestyle/environmental risk factors for breast cancer risk overall and for estrogen receptor positive (ER +) breast cancer.

Methods
Analyses were conducted using 72,285 breast cancer cases and 80,354 controls of European ancestry from the Breast Cancer Association Consortium. Gene–environment interactions were evaluated using standard unconditional logistic regression models and likelihood ratio tests for breast cancer risk overall and for ER + breast cancer. Bayesian False Discovery Probability was employed to assess the noteworthiness of each SNP-risk factor pairs.

Results
Assuming a 1 × 10–5 prior probability of a true association for each SNP-risk factor pairs and a Bayesian False Discovery Probability < 15%, we identified two independent SNP-risk factor pairs: rs80018847(9p13)-LINGO2 and adult height in association with overall breast cancer risk (ORint = 0.94, 95% CI 0.92–0.96), and rs4770552(13q12)-SPATA13 and age at menarche for ER + breast cancer risk (ORint = 0.91, 95% CI 0.88–0.94).

Conclusions
Overall, the contribution of G×E interactions to the heritability of breast cancer is very small. At the population level, multiplicative G×E interactions do not make an important contribution to risk prediction in breast cancer.
OriginalsprogEngelsk
Artikelnummer93
TidsskriftBreast cancer research : BCR
Vol/bind25
Udgave nummer1
Antal sider13
ISSN1465-5411
DOI
StatusUdgivet - 2023

Bibliografisk note

Publisher Copyright:
© 2023. BioMed Central Ltd., part of Springer Nature.

Citationsformater