A Metric Learning Reality Check

Kevin Musgrave*, Serge Belongie, Ser Nam Lim

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskriftKonferenceartikelForskningpeer review

228 Citationer (Scopus)

Abstract

Deep metric learning papers from the past four years have consistently claimed great advances in accuracy, often more than doubling the performance of decade-old methods. In this paper, we take a closer look at the field to see if this is actually true. We find flaws in the experimental methodology of numerous metric learning papers, and show that the actual improvements over time have been marginal at best. Code is available at github.com/KevinMusgrave/powerful-benchmarker.

OriginalsprogEngelsk
TidsskriftLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Sider (fra-til)681-699
Antal sider19
ISSN0302-9743
DOI
StatusUdgivet - 2020
Udgivet eksterntJa
Begivenhed16th European Conference on Computer Vision, ECCV 2020 - Glasgow, Storbritannien
Varighed: 23 aug. 202028 aug. 2020

Konference

Konference16th European Conference on Computer Vision, ECCV 2020
Land/OmrådeStorbritannien
ByGlasgow
Periode23/08/202028/08/2020

Bibliografisk note

Publisher Copyright:
© 2020, Springer Nature Switzerland AG.

Citationsformater