A model where the least trimmed squares estimator is maximum likelihood

Vanessa Berenguer-Rico, Soren Johansen, Bent Nielsen

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Abstract

The least trimmed squares (LTS) estimator is a popular robust regression estimator. It finds a subsample of h ‘good’ observations among n observations and applies least squares on that subsample. We formulate a model in which this estimator is maximum likelihood. The model has ‘outliers’ of a new type, where the outlying observations are drawn from a distribution with values outside the realized range of h ‘good’, normal observations. The LTS estimator is found to be h 1/2 consistent and asymptotically standard normal in the location-scale case. Consistent estimation of h is discussed. The model differs from the commonly used E-contamination models and opens the door for statistical discussion on contamination schemes, new methodological developments on tests for contamination as well as inferences based on the estimated good data.
OriginalsprogEngelsk
TidsskriftJournal of The Royal Statistical Society Series B-statistical Methodology
Vol/bind85
Udgave nummer3
Sider (fra-til)886-912
ISSN1369-7412
DOI
StatusUdgivet - 2023

Citationsformater