A note on additive twists, reciprocity laws and quantum modular forms

Asbjørn Christian Nordentoft*

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

3 Citationer (Scopus)
20 Downloads (Pure)

Abstract

We prove that the central values of additive twists of a cuspidal L-function define a quantum modular form in the sense of Zagier, generalizing recent results of Bettin and Drappeau. From this, we deduce a reciprocity law for the twisted first moment of multiplicative twists of cuspidal L-functions, similar to reciprocity laws discovered by Conrey for the twisted second moment of Dirichlet L-functions. Furthermore, we give an interpretation of quantum modularity at infinity for additive twists of L-functions of weight 2 cusp forms in terms of the corresponding functional equations.

OriginalsprogEngelsk
TidsskriftRamanujan Journal
Vol/bind56
Sider (fra-til)151–162
ISSN1382-4090
DOI
StatusUdgivet - 2021

Citationsformater