TY - JOUR
T1 - Affinity-Guided Conjugation to Antibodies for Use in Positron Emission Tomography
AU - Skovsgaard, Mikkel B.
AU - Jeppesen, Troels E.
AU - Mortensen, Michael R.
AU - Nielsen, Carsten H.
AU - Madsen, Jacob
AU - Kjaer, Andreas
AU - Gothelf, Kurt V.
PY - 2019
Y1 - 2019
N2 - The radionuclide copper-64 is widely used in combination with biomolecules, such as antibodies, for positron emission tomography (PET). Copper-64 is ideal for the imaging of biomolecules with long circulation times due to its relatively long half-life, and when conjugated to an antibody, specific cells can be targeted in vivo. Here, we have prepared a trastuzumab-chelator conjugate by using affinity-guided conjugation, in which an azide was attached to the antibody prior to a strain promoted azide-alkyne cycloaddition reaction with DBCO-PEG 4 -NOTA. The conjugate was benchmarked against a standard nonspecific labeled trastuzumab-NOTA conjugate. The conjugates were tested for incorporation of copper-64, stability in buffer and plasma, and tumor targeting in vivo using PET imaging of mice with xenograft tumors expressing HER2. Both conjugates showed good incorporation of copper-64 and a high stability with less than 10% degradation after 36 h. Furthermore, both conjugates showed accumulation at the tumor site with mean uptake of 7.2 ± 2.4%ID/g and 5.2 ± 1.3%ID/g after 40 h for the affinity-guided labeled trastuzumab and the nonspecific labeled trastuzumab, respectively.
AB - The radionuclide copper-64 is widely used in combination with biomolecules, such as antibodies, for positron emission tomography (PET). Copper-64 is ideal for the imaging of biomolecules with long circulation times due to its relatively long half-life, and when conjugated to an antibody, specific cells can be targeted in vivo. Here, we have prepared a trastuzumab-chelator conjugate by using affinity-guided conjugation, in which an azide was attached to the antibody prior to a strain promoted azide-alkyne cycloaddition reaction with DBCO-PEG 4 -NOTA. The conjugate was benchmarked against a standard nonspecific labeled trastuzumab-NOTA conjugate. The conjugates were tested for incorporation of copper-64, stability in buffer and plasma, and tumor targeting in vivo using PET imaging of mice with xenograft tumors expressing HER2. Both conjugates showed good incorporation of copper-64 and a high stability with less than 10% degradation after 36 h. Furthermore, both conjugates showed accumulation at the tumor site with mean uptake of 7.2 ± 2.4%ID/g and 5.2 ± 1.3%ID/g after 40 h for the affinity-guided labeled trastuzumab and the nonspecific labeled trastuzumab, respectively.
U2 - 10.1021/acs.bioconjchem.9b00013
DO - 10.1021/acs.bioconjchem.9b00013
M3 - Journal article
C2 - 30807110
AN - SCOPUS:85063141221
VL - 30
SP - 881
EP - 887
JO - Bioconjugate Chemistry
JF - Bioconjugate Chemistry
SN - 1043-1802
IS - 3
ER -