An NMR Metabolomics Approach to Investigate Factors Affecting the Yoghurt Fermentation Process and Quality

Alessia Trimigno, Christian Bøge Lyndgaard, Gudrun Anna Atladottir, Violetta Aru, Søren Balling Engelsen, Line Katrine Harder Clemmensen

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

31 Citationer (Scopus)
97 Downloads (Pure)

Abstract

A great number of factors can influence milk fermentation for yoghurt production such as fermentation conditions, starter cultures and milk characteristics. It is important for dairy companies to know the best combinations of these parameters for a controlled fermentation and for the desired qualities of yoghurt. This study investigates the use of a(1)H-NMR metabolomics approach to monitor the changes in milk during fermentation from time 0 to 24 h, taking samples every hour in the first 8 h and then at the end-point at 24 h. Three different starter cultures (L. delbrueckiissp.bulgaricus,S. thermophilusand their combination) were used and two different heat treatments (99 or 105 degrees C) were applied to milk. The results clearly show the breakdown of proteins and lactose as well as the concomitant increase in acetate, lactate and citrate during fermentation. Formate is found at different initial concentrations depending on the heat treatment of the milk and its different time trajectory depends on the starter cultures:Lactobacilluscannot produce formate, but needs it for growth, whilstStreptococcusis able to produce formate from pyruvate, therefore promoting the symbiotic relationship between the two strains. On the other hand,Lactobacilluscan hydrolyze milk proteins into amino acids, enriching the quality of the final product. In this way, better insight into the protocooperation of lactic acid bacteria strains and information on the impact of a greater heat treatment in the initial matrix were obtained. The global chemical view on the fermentations provided using NMR is key information for yoghurt producers and companies producing starter cultures.

OriginalsprogEngelsk
Artikelnummer293
TidsskriftMetabolites
Vol/bind10
Udgave nummer7
Antal sider16
ISSN2218-1989
DOI
StatusUdgivet - 2020

Citationsformater