TY - JOUR
T1 - Associations of genetic risk, BMI trajectories, and the risk of non-small cell lung cancer
T2 - a population-based cohort study
AU - You, Dongfang
AU - Wang, Danhua
AU - Wu, Yaqian
AU - Chen, Xin
AU - Shao, Fang
AU - Wei, Yongyue
AU - Zhang, Ruyang
AU - Lange, Theis
AU - Ma, Hongxia
AU - Xu, Hongyang
AU - Hu, Zhibin
AU - Christiani, David C
AU - Shen, Hongbing
AU - Chen, Feng
AU - Zhao, Yang
N1 - © 2022. The Author(s).
PY - 2022
Y1 - 2022
N2 - BACKGROUND: Body mass index (BMI) has been found to be associated with a decreased risk of non-small cell lung cancer (NSCLC); however, the effect of BMI trajectories and potential interactions with genetic variants on NSCLC risk remain unknown.METHODS: Cox proportional hazards regression model was applied to assess the association between BMI trajectory and NSCLC risk in a cohort of 138,110 participants from the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial. One-sample Mendelian randomization (MR) analysis was further used to access the causality between BMI trajectories and NSCLC risk. Additionally, polygenic risk score (PRS) and genome-wide interaction analysis (GWIA) were used to evaluate the multiplicative interaction between BMI trajectories and genetic variants in NSCLC risk.RESULTS: Compared with individuals maintaining a stable normal BMI (n = 47,982, 34.74%), BMI trajectories from normal to overweight (n = 64,498, 46.70%), from normal to obese (n = 21,259, 15.39%), and from overweight to obese (n = 4,371, 3.16%) were associated with a decreased risk of NSCLC (hazard ratio [HR] for trend = 0.78, P < 2×10-16). An MR study using BMI trajectory associated with genetic variants revealed no significant association between BMI trajectories and NSCLC risk. Further analysis of PRS showed that a higher GWAS-identified PRS (PRSGWAS) was associated with an increased risk of NSCLC, while the interaction between BMI trajectories and PRSGWAS with the NSCLC risk was not significant (PsPRS= 0.863 and PwPRS= 0.704). In GWIA analysis, four independent susceptibility loci (P < 1×10-6) were found to be associated with BMI trajectories on NSCLC risk, including rs79297227 (12q14.1, located in SLC16A7, Pinteraction = 1.01×10-7), rs2336652 (3p22.3, near CLASP2, Pinteraction = 3.92×10-7), rs16018 (19p13.2, in CACNA1A, Pinteraction = 3.92×10-7), and rs4726760 (7q34, near BRAF, Pinteraction = 9.19×10-7). Functional annotation demonstrated that these loci may be involved in the development of NSCLC by regulating cell growth, differentiation, and inflammation.CONCLUSIONS: Our study has shown an association between BMI trajectories, genetic factors, and NSCLC risk. Interestingly, four novel genetic loci were identified to interact with BMI trajectories on NSCLC risk, providing more support for the aetiology research of NSCLC.TRIAL REGISTRATION: http://www.CLINICALTRIALS: gov , NCT01696968 .
AB - BACKGROUND: Body mass index (BMI) has been found to be associated with a decreased risk of non-small cell lung cancer (NSCLC); however, the effect of BMI trajectories and potential interactions with genetic variants on NSCLC risk remain unknown.METHODS: Cox proportional hazards regression model was applied to assess the association between BMI trajectory and NSCLC risk in a cohort of 138,110 participants from the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial. One-sample Mendelian randomization (MR) analysis was further used to access the causality between BMI trajectories and NSCLC risk. Additionally, polygenic risk score (PRS) and genome-wide interaction analysis (GWIA) were used to evaluate the multiplicative interaction between BMI trajectories and genetic variants in NSCLC risk.RESULTS: Compared with individuals maintaining a stable normal BMI (n = 47,982, 34.74%), BMI trajectories from normal to overweight (n = 64,498, 46.70%), from normal to obese (n = 21,259, 15.39%), and from overweight to obese (n = 4,371, 3.16%) were associated with a decreased risk of NSCLC (hazard ratio [HR] for trend = 0.78, P < 2×10-16). An MR study using BMI trajectory associated with genetic variants revealed no significant association between BMI trajectories and NSCLC risk. Further analysis of PRS showed that a higher GWAS-identified PRS (PRSGWAS) was associated with an increased risk of NSCLC, while the interaction between BMI trajectories and PRSGWAS with the NSCLC risk was not significant (PsPRS= 0.863 and PwPRS= 0.704). In GWIA analysis, four independent susceptibility loci (P < 1×10-6) were found to be associated with BMI trajectories on NSCLC risk, including rs79297227 (12q14.1, located in SLC16A7, Pinteraction = 1.01×10-7), rs2336652 (3p22.3, near CLASP2, Pinteraction = 3.92×10-7), rs16018 (19p13.2, in CACNA1A, Pinteraction = 3.92×10-7), and rs4726760 (7q34, near BRAF, Pinteraction = 9.19×10-7). Functional annotation demonstrated that these loci may be involved in the development of NSCLC by regulating cell growth, differentiation, and inflammation.CONCLUSIONS: Our study has shown an association between BMI trajectories, genetic factors, and NSCLC risk. Interestingly, four novel genetic loci were identified to interact with BMI trajectories on NSCLC risk, providing more support for the aetiology research of NSCLC.TRIAL REGISTRATION: http://www.CLINICALTRIALS: gov , NCT01696968 .
KW - Body Mass Index
KW - Carcinoma, Non-Small-Cell Lung/epidemiology
KW - Cohort Studies
KW - Humans
KW - Lung Neoplasms/epidemiology
KW - Male
KW - Obesity/complications
KW - Overweight/complications
KW - Risk Factors
U2 - 10.1186/s12916-022-02400-6
DO - 10.1186/s12916-022-02400-6
M3 - Journal article
C2 - 35658861
VL - 20
JO - BMC Medicine
JF - BMC Medicine
SN - 1741-7015
IS - 1
M1 - 203
ER -