TY - JOUR
T1 - Automated caries detection in vivo using a 3D intraoral scanner
T2 - [incl. Publisher Correction]
AU - Michou, Stavroula
AU - Lambach, Mathias S.
AU - Ntovas, Panagiotis
AU - Benetti, Ana R.
AU - Bakhshandeh, Azam
AU - Rahiotis, Christos
AU - Ekstrand, Kim R.
AU - Vannahme, Christoph
N1 - Publisher Correction: Automated caries detection in vivo using a 3D intraoral scanner DOI: 10.1038/s41598-021-01926-8; 10.1038/s41598-022-17576-3
© 2021. The Author(s).
PY - 2021
Y1 - 2021
N2 - The use of 3D intraoral scanners (IOS) and software that can support automated detection and objective monitoring of oral diseases such as caries, tooth wear or periodontal diseases, is increasingly receiving attention from researchers and industry. This study clinically validates an automated caries scoring system for occlusal caries detection and classification, previously defined for an IOS system featuring fluorescence (TRIOS 4, 3Shape TRIOS A/S, Denmark). Four algorithms (ALG1, ALG2, ALG3, ALG4) are assessed for the IOS; the first three are based only on fluorescence information, while ALG4 also takes into account the tooth color information. The diagnostic performance of these automated algorithms is compared with the diagnostic performance of the clinical visual examination, while histological assessment is used as reference. Additionally, possible differences between in vitro and in vivo diagnostic performance of the IOS system are investigated. The algorithms show comparable in vivo diagnostic performance to the visual examination with no significant difference in the area under the ROC curves ([Formula: see text]). Only minor differences between their in vitro and in vivo diagnostic performance are noted but no significant differences in the area under the ROC curves, ([Formula: see text]). This novel IOS system exhibits encouraging performance for clinical application on occlusal caries detection and classification. Different approaches can be investigated for possible optimization of the system.
AB - The use of 3D intraoral scanners (IOS) and software that can support automated detection and objective monitoring of oral diseases such as caries, tooth wear or periodontal diseases, is increasingly receiving attention from researchers and industry. This study clinically validates an automated caries scoring system for occlusal caries detection and classification, previously defined for an IOS system featuring fluorescence (TRIOS 4, 3Shape TRIOS A/S, Denmark). Four algorithms (ALG1, ALG2, ALG3, ALG4) are assessed for the IOS; the first three are based only on fluorescence information, while ALG4 also takes into account the tooth color information. The diagnostic performance of these automated algorithms is compared with the diagnostic performance of the clinical visual examination, while histological assessment is used as reference. Additionally, possible differences between in vitro and in vivo diagnostic performance of the IOS system are investigated. The algorithms show comparable in vivo diagnostic performance to the visual examination with no significant difference in the area under the ROC curves ([Formula: see text]). Only minor differences between their in vitro and in vivo diagnostic performance are noted but no significant differences in the area under the ROC curves, ([Formula: see text]). This novel IOS system exhibits encouraging performance for clinical application on occlusal caries detection and classification. Different approaches can be investigated for possible optimization of the system.
UR - https://doi.org/10.1038/s41598-021-01926-8
UR - https://doi.org/10.1038/s41598-022-17576-3
U2 - 10.1038/s41598-021-00259-w
DO - 10.1038/s41598-021-00259-w
M3 - Journal article
C2 - 34711853
VL - 11
JO - Scientific Reports
JF - Scientific Reports
SN - 2045-2322
M1 - 21276
ER -