Automatic robust adaptive beamforming based on latent root regression

Jun Yang*, Xiaochuan Ma, Chaohuan Hou, Yicong Liu

*Corresponding author af dette arbejde

Publikation: Bidrag til bog/antologi/rapportKonferencebidrag i proceedingsForskningpeer review

Abstract

In this paper, we describe a fully automatic method using latent root regression based on the generalized sidelobe can-celer (GSC) parameterization of the minimum variance beam-former. The proposed method gives a theoretically optimal solution in mean-squared error (MSE) sense (minimized MSE solution) by choosing a linear combination of individual latent root regression predictors in the GSC formulation. The performance of the resulting beamformer is illustrated via numerical examples and compared with existing automatic diagonal loading techniques including HKB and the general linear combination (GLC) shrinkage-based method. The simulations show that the proposed method usually gives better performance than HKB, meanwhile, is more robust to errors on steering vectors than GLC when the sample sizes are high.

OriginalsprogEngelsk
Titel2009 IEEE 10th Workshop on Signal Processing Advances in Wireless Communications, SPAWC 2009
Antal sider5
Publikationsdato2009
Sider544-548
Artikelnummer5161844
ISBN (Trykt)9781424436965
DOI
StatusUdgivet - 2009
Udgivet eksterntJa
Begivenhed2009 IEEE 10th Workshop on Signal Processing Advances in Wireless Communications, SPAWC 2009 - Perugia, Italien
Varighed: 21 jun. 200924 jun. 2009

Konference

Konference2009 IEEE 10th Workshop on Signal Processing Advances in Wireless Communications, SPAWC 2009
Land/OmrådeItalien
ByPerugia
Periode21/06/200924/06/2009
NavnIEEE Workshop on Signal Processing Advances in Wireless Communications, SPAWC

Citationsformater