TY - JOUR
T1 - Biophysical Analysis of a Minimalistic Kidney Model Expressing SGLT1 Reveals Crosstalk between Luminal and Lateral Membranes and a Plausible Mechanism of Isosmotic Transport
AU - Larsen, Erik Hviid
AU - Sørensen, Jens Nørkær
N1 - Publisher Copyright:
© 2024 by the authors.
PY - 2024
Y1 - 2024
N2 - We extended our model of the S1 tubular segment to address the mechanisms by which SGLT1 interacts with lateral Na/K pumps and tight junctional complexes to generate isosmotic fluid reabsorption via tubular segment S3. The strategy applied allowed for simulation of laboratory experiments. Reproducing known experimental results constrained the range of acceptable model outputs and contributed to minimizing the free parameter space. (1) In experimental conditions, published Na and K concentrations of proximal kidney cells were found to deviate substantially from their normal physiological levels. Analysis of the mechanisms involved suggested insufficient oxygen supply as the cause and, indirectly, that a main function of the Na/H exchanger (NHE3) is to extrude protons stemming from mitochondrial energy metabolism. (2) The water path from the lumen to the peritubular space passed through aquaporins on the cell membrane and claudin-2 at paracellular tight junctions, with an additional contribution to water transport by the coupling of 1 glucose:2 Na:400 H2O in SGLT1. (3) A Na-uptake component passed through paracellular junctions via solvent drag in Na- and water-permeable claudin-2, thus bypassing the Na/K pump, in agreement with the findings of early studies. (4) Electrical crosstalk between apical rheogenic SGLT1 and lateral rheogenic Na/K pumps resulted in tight coupling of luminal glucose uptake and transepithelial water flow. (5) Isosmotic transport was achieved by Na-mediated ion recirculation at the peritubular membrane.
AB - We extended our model of the S1 tubular segment to address the mechanisms by which SGLT1 interacts with lateral Na/K pumps and tight junctional complexes to generate isosmotic fluid reabsorption via tubular segment S3. The strategy applied allowed for simulation of laboratory experiments. Reproducing known experimental results constrained the range of acceptable model outputs and contributed to minimizing the free parameter space. (1) In experimental conditions, published Na and K concentrations of proximal kidney cells were found to deviate substantially from their normal physiological levels. Analysis of the mechanisms involved suggested insufficient oxygen supply as the cause and, indirectly, that a main function of the Na/H exchanger (NHE3) is to extrude protons stemming from mitochondrial energy metabolism. (2) The water path from the lumen to the peritubular space passed through aquaporins on the cell membrane and claudin-2 at paracellular tight junctions, with an additional contribution to water transport by the coupling of 1 glucose:2 Na:400 H2O in SGLT1. (3) A Na-uptake component passed through paracellular junctions via solvent drag in Na- and water-permeable claudin-2, thus bypassing the Na/K pump, in agreement with the findings of early studies. (4) Electrical crosstalk between apical rheogenic SGLT1 and lateral rheogenic Na/K pumps resulted in tight coupling of luminal glucose uptake and transepithelial water flow. (5) Isosmotic transport was achieved by Na-mediated ion recirculation at the peritubular membrane.
KW - crosstalk between apical SGLT1 and lateral Na/K pump
KW - glucose clearing
KW - glucose uptake by the S3 segment
KW - isosmotic fluid absorption
KW - kidney proximal tubule
KW - mathematical modeling
KW - SGLT1
KW - water transport by SGLT1
U2 - 10.3390/biom14080889
DO - 10.3390/biom14080889
M3 - Journal article
C2 - 39199277
AN - SCOPUS:85202545263
SN - 2218-273X
VL - 14
JO - Biomolecules
JF - Biomolecules
IS - 8
M1 - 889
ER -