Bounded Collection of Feynman Integral Calabi-Yau Geometries

Jacob L. Bourjaily, Andrew J. McLeod, Matt Von Hippel, Matthias Wilhelm

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

81 Citationer (Scopus)
85 Downloads (Pure)

Abstract

We define the rigidity of a Feynman integral to be the smallest dimension over which it is nonpolylogarithmic. We prove that massless Feynman integrals in four dimensions have a rigidity bounded by 2(L-1) at L loops provided they are in the class that we call marginal: those with (L+1)D/2 propagators in (even) D dimensions. We show that marginal Feynman integrals in D dimensions generically involve Calabi-Yau geometries, and we give examples of finite four-dimensional Feynman integrals in massless φ4 theory that saturate our predicted bound in rigidity at all loop orders.

OriginalsprogEngelsk
Artikelnummer031601
TidsskriftPhysical Review Letters
Vol/bind122
Udgave nummer3
Antal sider7
ISSN0031-9007
DOI
StatusUdgivet - 24 jan. 2019

Citationsformater