Brain Segmentation in Rodent MR-Images Using Convolutional Neural Networks

Björn Sigurdsson, Sune Darkner, Stefan Horst Sommer, Kristian Nygaard Mortensen, Simon Sanggaard, Serhii Kostrikov, Maiken Nedergaard

Publikation: KonferencebidragKonferenceabstrakt til konferenceForskningpeer review

Abstract

This study compares two different methods for the task of brain segmentation in rodent MR-images, a convolutional neural network (CNN) and majority voting of a registration based atlas (RBA) , and how limited training data affect their performance. The CNN was implemented in Tensorflow.

The RBA performs better on average when using a training set with fewer than 20 images but the CNN achieves a higher median dice-score with a training set of 19 images.
OriginalsprogEngelsk
Publikationsdato2018
StatusUdgivet - 2018
BegivenhedJoint Annual Meeting ISMRM-ESMRMB 2018 - Paris, Frankrig
Varighed: 16 jun. 201821 okt. 2018

Konference

KonferenceJoint Annual Meeting ISMRM-ESMRMB 2018
Land/OmrådeFrankrig
ByParis
Periode16/06/201821/10/2018

Citationsformater