TY - JOUR
T1 - Bridge the gap between statistical and hand-crafted grammars
AU - Basirat, Ali
AU - Faili, Heshaam
PY - 2013/8
Y1 - 2013/8
N2 - LTAG is a rich formalism for performing NLP tasks such as semantic interpretation, parsing, machine translation and information retrieval. Depend on the specific NLP task, different kinds of LTAGs for a language may be developed. Each of these LTAGs is enriched with some specific features such as semantic representation and statistical information that make them suitable to be used in that task. The distribution of these capabilities among the LTAGs makes it difficult to get the benefit from all of them in NLP applications. This paper discusses a statistical model to bridge between two kinds LTAGs for a natural language in order to benefit from the capabilities of both kinds. To do so, an HMM was trained that links an elementary tree sequence of a source LTAG onto an elementary tree sequence of a target LTAG. Training was performed by using the standard HMM training algorithm called Baum-Welch. To lead the training algorithm to a better solution, the initial state of the HMM was also trained by a novel EM-based semi-supervised bootstrapping algorithm. The model was tested on two English LTAGs, XTAG (XTAG-Group, 2001) and MICA's grammar (Bangalore et al., 2009) as the target and source LTAGs, respectively. The empirical results confirm that the model can provide a satisfactory way for linking these LTAGs to share their capabilities together.
AB - LTAG is a rich formalism for performing NLP tasks such as semantic interpretation, parsing, machine translation and information retrieval. Depend on the specific NLP task, different kinds of LTAGs for a language may be developed. Each of these LTAGs is enriched with some specific features such as semantic representation and statistical information that make them suitable to be used in that task. The distribution of these capabilities among the LTAGs makes it difficult to get the benefit from all of them in NLP applications. This paper discusses a statistical model to bridge between two kinds LTAGs for a natural language in order to benefit from the capabilities of both kinds. To do so, an HMM was trained that links an elementary tree sequence of a source LTAG onto an elementary tree sequence of a target LTAG. Training was performed by using the standard HMM training algorithm called Baum-Welch. To lead the training algorithm to a better solution, the initial state of the HMM was also trained by a novel EM-based semi-supervised bootstrapping algorithm. The model was tested on two English LTAGs, XTAG (XTAG-Group, 2001) and MICA's grammar (Bangalore et al., 2009) as the target and source LTAGs, respectively. The empirical results confirm that the model can provide a satisfactory way for linking these LTAGs to share their capabilities together.
KW - Hidden Markov model
KW - LTAG
KW - MICA
KW - Tree adjoining grammar
KW - XTAG
UR - http://www.scopus.com/inward/record.url?scp=84891902884&partnerID=8YFLogxK
U2 - 10.1016/j.csl.2013.02.001
DO - 10.1016/j.csl.2013.02.001
M3 - Journal article
AN - SCOPUS:84891902884
SN - 0885-2308
VL - 27
SP - 1085
EP - 1104
JO - Computer Speech and Language
JF - Computer Speech and Language
IS - 5
ER -