Abstract
We consider the partition lattice $\Pi_\kappa$ on any set of transfinite cardinality $\kappa$, and properties of $\Pi_\kappa$ whose analogues do not hold for finite cardinalities. Assuming the Axiom of Choice we prove: (I) the cardinality of any maximal well-ordered chain is between the cofinality $\mathrm{cf}(\kappa)$ and $\kappa$, and $\kappa$ always occurs as the cardinality of a maximal well-ordered chain; (II) there are maximal chains in $\Pi_\kappa$ of cardinality $> \kappa$; (III) if, for every ordinal $\delta$ with $|\delta| $ 2$.
Originalsprog | Engelsk |
---|---|
Artikelnummer | 37 |
Tidsskrift | Algebra Universalis |
Vol/bind | 79 |
Udgave nummer | 37 |
Antal sider | 21 |
ISSN | 0002-5240 |
DOI | |
Status | Udgivet - 2018 |
Emneord
- math.RA
- 06B05 (Primary), 06C15 (Secondary)