Chains, antichains, and complements in infinite partition lattices

James Emil Avery, Jean-Yves Moyen, Pavel Ruzicka, Jakob Grue Simonsen

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

4 Citationer (Scopus)

Abstract

We consider the partition lattice $\Pi_\kappa$ on any set of transfinite cardinality $\kappa$, and properties of $\Pi_\kappa$ whose analogues do not hold for finite cardinalities. Assuming the Axiom of Choice we prove: (I) the cardinality of any maximal well-ordered chain is between the cofinality $\mathrm{cf}(\kappa)$ and $\kappa$, and $\kappa$ always occurs as the cardinality of a maximal well-ordered chain; (II) there are maximal chains in $\Pi_\kappa$ of cardinality $> \kappa$; (III) if, for every ordinal $\delta$ with $|\delta| $ 2$.
OriginalsprogEngelsk
Artikelnummer37
TidsskriftAlgebra Universalis
Vol/bind79
Udgave nummer37
Antal sider21
ISSN0002-5240
DOI
StatusUdgivet - 2018

Emneord

  • math.RA
  • 06B05 (Primary), 06C15 (Secondary)

Citationsformater