TY - JOUR
T1 - Changes in active-site geometry on X-ray photo-reduction of a lytic polysaccharide monooxygenase active-site copper and saccharide binding
AU - Tandrup, Tobias
AU - Muderspach, Sebastian J.
AU - Banerjee, Sanchari
AU - Santoni, Gianluca
AU - Ipsen, Johan O.
AU - Hernandez-Rollan, Cristina
AU - Norholm, Morten H. H.
AU - Johansen, Katja S.
AU - Meilleur, Flora
AU - Lo Leggio, Leila
PY - 2022/9
Y1 - 2022/9
N2 - The recently discovered lytic polysaccharide monooxygenases (LPMOs) are Cu-containing enzymes capable of degrading polysaccharide substrates oxidatively. The generally accepted first step in the LPMO reaction is the reduction of the active-site metal ion from Cu2+ to Cu+. Here we have used a systematic diffraction data collection method to monitor structural changes in two AA9 LPMOs, one from Lentinus similis (LsAA9_A) and one from Thermoascus aurantiacus (TaAA9_A), as the active-site Cu is photoreduced in the X-ray beam. For LsAA9_A, the protein produced in two different recombinant systems was crystallized to probe the effect of post-translational modifications and different crystallization conditions on the active site and metal photoreduction. We can recommend that crystallographic studies of AA9 LPMOs wishing to address the Cu2+ form use a total X-ray dose below 3 x 10(4) Gy, while the Cu+ form can be attained using 1 x 10(6) Gy. In all cases, we observe the transition from a hexacoordinated Cu site with two solvent-facing ligands to a T-shaped geometry with no exogenous ligands, and a clear increase of the theta(2) parameter and a decrease of the theta(3) parameter by averages of 9.2 degrees and 8.4 degrees, respectively, but also a slight increase in theta(T). Thus, the theta(2) and theta(3) parameters are helpful diagnostics for the oxidation state of the metal in a His-brace protein. On binding of cello-oligosaccharides to LsAA9_A, regardless of the production source, the theta(T) parameter increases, making the Cu site less planar, while the active-site Tyr-Cu distance decreases reproducibly for the Cu2+ form. Thus, the theta(T) increase found on copper reduction may bring LsAA9_A closer to an oligosaccharide-bound state and contribute to the observed higher affinity of reduced LsAA9_A for cellulosic substrates.
AB - The recently discovered lytic polysaccharide monooxygenases (LPMOs) are Cu-containing enzymes capable of degrading polysaccharide substrates oxidatively. The generally accepted first step in the LPMO reaction is the reduction of the active-site metal ion from Cu2+ to Cu+. Here we have used a systematic diffraction data collection method to monitor structural changes in two AA9 LPMOs, one from Lentinus similis (LsAA9_A) and one from Thermoascus aurantiacus (TaAA9_A), as the active-site Cu is photoreduced in the X-ray beam. For LsAA9_A, the protein produced in two different recombinant systems was crystallized to probe the effect of post-translational modifications and different crystallization conditions on the active site and metal photoreduction. We can recommend that crystallographic studies of AA9 LPMOs wishing to address the Cu2+ form use a total X-ray dose below 3 x 10(4) Gy, while the Cu+ form can be attained using 1 x 10(6) Gy. In all cases, we observe the transition from a hexacoordinated Cu site with two solvent-facing ligands to a T-shaped geometry with no exogenous ligands, and a clear increase of the theta(2) parameter and a decrease of the theta(3) parameter by averages of 9.2 degrees and 8.4 degrees, respectively, but also a slight increase in theta(T). Thus, the theta(2) and theta(3) parameters are helpful diagnostics for the oxidation state of the metal in a His-brace protein. On binding of cello-oligosaccharides to LsAA9_A, regardless of the production source, the theta(T) parameter increases, making the Cu site less planar, while the active-site Tyr-Cu distance decreases reproducibly for the Cu2+ form. Thus, the theta(T) increase found on copper reduction may bring LsAA9_A closer to an oligosaccharide-bound state and contribute to the observed higher affinity of reduced LsAA9_A for cellulosic substrates.
KW - MACROMOLECULAR CRYSTALLOGRAPHY EXPERIMENTS
KW - PROTEIN CRYSTALLOGRAPHY
KW - SERIAL SYNCHROTRON
KW - METAL
KW - CELLULOSE
KW - MECHANISM
KW - DEGRADATION
KW - ACTIVATION
KW - INSIGHTS
KW - CRYSTALS
U2 - 10.1107/S2052252522007175
DO - 10.1107/S2052252522007175
M3 - Journal article
C2 - 36071795
VL - 9
SP - 666
EP - 681
JO - I U Cr J
JF - I U Cr J
SN - 2052-2525
IS - 5
ER -