Clique is hard on average for regular resolution

Albert Atserias, Massimo Lauria, Ilario Bonacina, Jakob Nordström, Susanna F. De Rezende, Alexander Razborov

Publikation: Bidrag til bog/antologi/rapportKonferencebidrag i proceedingsForskningpeer review

8 Citationer (Scopus)

Abstract

We prove that for k ≪ 4 n regular resolution requires length nΩ(k) to establish that an Erdős–Rényi graph with appropriately chosen edge density does not contain a k-clique. This lower bound is optimal up to the multiplicative constant in the exponent, and also implies unconditional nΩ(k) lower bounds on running time for several state-of-the-art algorithms for finding maximum cliques in graphs.

OriginalsprogEngelsk
TitelSTOC 2018 - Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing
RedaktørerMonika Henzinger, David Kempe, Ilias Diakonikolas
Antal sider14
ForlagACM Association for Computing Machinery
Publikationsdato20 jun. 2018
Sider646-659
ISBN (Elektronisk)9781450355599
DOI
StatusUdgivet - 20 jun. 2018
Udgivet eksterntJa
Begivenhed50th Annual ACM Symposium on Theory of Computing, STOC 2018 - Los Angeles, USA
Varighed: 25 jun. 201829 jun. 2018

Konference

Konference50th Annual ACM Symposium on Theory of Computing, STOC 2018
Land/OmrådeUSA
ByLos Angeles
Periode25/06/201829/06/2018
SponsorACM Special Interest Group on Algorithms and Computation Theory (SIGACT)
NavnProceedings of the Annual ACM Symposium on Theory of Computing
ISSN0737-8017

Citationsformater