Community-led, integrated, reproducible multi-omics with anvi'o

A. Murat Eren*, Evan Kiefl, Alon Shaiber, Iva Veseli, Samuel E. Miller, Matthew S. Schechter, Isaac Fink, Jessica N. Pan, Mahmoud Yousef, Emily C. Fogarty, Florian Trigodet, Andrea R. Watson, Ozcan C. Esen, Ryan M. Moore, Quentin Clayssen, Michael D. Lee, Veronika Kivenson, Elaina D. Graham, Bryan D. Merrill, Antti KarkmanDaniel Blankenberg, John M. Eppley, Andreas Sjodin, Jarrod J. Scott, Xabier Vazquez-Campos, Luke J. McKay, Elizabeth A. McDaniel, Sarah L. R. Stevens, Rika E. Anderson, Jessika Fuessel, Antonio Fernandez-Guerra, Lois Maignien, Tom O. Delmont, Amy D. Willis

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskriftLederForskningpeer review

460 Citationer (Scopus)

Abstract

Big data abound in microbiology, but the workflows designed to enable researchers to interpret data can constrain the biological questions that can be asked. Five years after anvi'o was first published, this community-led multi-omics platform is maturing into an open software ecosystem that reduces constraints in 'omics data analyses.

OriginalsprogEngelsk
TidsskriftNature Microbiology
Vol/bind6
Udgave nummer1
Sider (fra-til)3-6
Antal sider4
ISSN2058-5276
DOI
StatusUdgivet - 2021

Citationsformater