TY - BOOK
T1 - Cross-Lingual Word Embeddings
AU - Søgaard, Anders
AU - Vulić, Ivan
AU - Ruder, Sebastian
AU - Faruqui, Manaal
PY - 2019
Y1 - 2019
N2 - The majority of natural language processing (NLP) is English language processing, and while there is good language technology support for (standard varieties of) English, support for Albanian, Burmese, or Cebuano-and most other languages-remains limited. Being able to bridge this digital divide is important for scientific and democratic reasons but also represents an enormous growth potential. A key challenge for this to happen is learning to align basic meaning-bearing units of different languages. In this book, the authors survey and discuss recent and historical work on supervised and unsupervised learning of such alignments. Specifically, the book focuses on so-called cross-lingual word embeddings. The survey is intended to be systematic, using consistent notation and putting the available methods on comparable form, making it easy to compare wildly different approaches. In so doing, the authors establish previously unreported relations between these methods and are able to present a fast-growing literature in a very compact way. Furthermore, the authors discuss how best to evaluate cross-lingual word embedding methods and survey the resources available for students and researchers interested in this topic. Table of Contents: Preface / Introduction / Monolingual Word Embedding Models / Cross-Lingual Word Embedding Models: Typology / A Brief History of Cross-Lingual Word Representations / Word-Level Alignment Models / Sentence-Level Alignment Methods / Document-Level Alignment Models / From Bilingual to Multilingual Training / Unsupervised Learning of Cross-Lingual Word Embeddings / Applications and Evaluation / Useful Data and Software / General Challenges and Future Directions / Bibliography / Authors' Biographies.
AB - The majority of natural language processing (NLP) is English language processing, and while there is good language technology support for (standard varieties of) English, support for Albanian, Burmese, or Cebuano-and most other languages-remains limited. Being able to bridge this digital divide is important for scientific and democratic reasons but also represents an enormous growth potential. A key challenge for this to happen is learning to align basic meaning-bearing units of different languages. In this book, the authors survey and discuss recent and historical work on supervised and unsupervised learning of such alignments. Specifically, the book focuses on so-called cross-lingual word embeddings. The survey is intended to be systematic, using consistent notation and putting the available methods on comparable form, making it easy to compare wildly different approaches. In so doing, the authors establish previously unreported relations between these methods and are able to present a fast-growing literature in a very compact way. Furthermore, the authors discuss how best to evaluate cross-lingual word embedding methods and survey the resources available for students and researchers interested in this topic. Table of Contents: Preface / Introduction / Monolingual Word Embedding Models / Cross-Lingual Word Embedding Models: Typology / A Brief History of Cross-Lingual Word Representations / Word-Level Alignment Models / Sentence-Level Alignment Methods / Document-Level Alignment Models / From Bilingual to Multilingual Training / Unsupervised Learning of Cross-Lingual Word Embeddings / Applications and Evaluation / Useful Data and Software / General Challenges and Future Directions / Bibliography / Authors' Biographies.
KW - cross-lingual learning
KW - machine learning
KW - natural language processing
KW - semantics
UR - http://www.scopus.com/inward/record.url?scp=85066947466&partnerID=8YFLogxK
U2 - 10.2200/S00920ED2V01Y201904HLT042
DO - 10.2200/S00920ED2V01Y201904HLT042
M3 - Book
AN - SCOPUS:85066947466
T3 - Synthesis Lectures on Human Language Technologies
BT - Cross-Lingual Word Embeddings
PB - Morgan & Claypool Publishers
ER -