Abstract
TheDanishasylumadjudicationprocedure isatwo-tiered system,withtheImmigrationServicemakinginitialdeterminationsand theDanishRefugeeAppealsBoard(RAB)automaticallyappealingcases thatarerejected.Thisstudyaimstoemployadeepneuralnetwork(DNN)basedNaturalLanguageProcessing(NLP)pipeline topredictasylum decision-makingoutcomesusingadataset of over 15,515DanishasylumdecisionsprovidedbytheDanishRefugeeAppealsBoard(RAB) betweenJanuary1995andJanuary2021.Thisresearchseekstoimprove theperformanceandeffectivenessofdecision-makinginasylumcasesby addressingkeychallenges,suchasmodelingtheasylumdecision-making problemusingNLP-basedDNNsanddealingwithclassimbalanceissues. OurpreliminaryresultsindicatethatDNN-basedNLPpredictivemodels arecapableof learningmeaningful representationsofasylumcaseswith highprecisionandrecall,particularlywhenclassweightsareconsidered thanthebaselineDNNmodel.
| Originalsprog | Engelsk |
|---|---|
| Titel | Proceedings of the Seventeenth International Workshop on Juris-Informatics 2023 |
| Antal sider | 14 |
| Publikationsdato | 2023 |
| Sider | 92-105 |
| Status | Udgivet - 2023 |
| Begivenhed | International Workshop on Juris-Informatics - Kumamoto, Japan Varighed: 5 jun. 2023 → 6 jun. 2023 https://research.nii.ac.jp/~ksatoh/jurisin2023/ |
Konference
| Konference | International Workshop on Juris-Informatics |
|---|---|
| Land/Område | Japan |
| By | Kumamoto |
| Periode | 05/06/2023 → 06/06/2023 |
| Internetadresse |