Danish Asylum Adjudication using Deep Neural Networks and Natural Language Processing

Satya Mahesh Muddamsetty*, Mohammad Naser Sabet Jahromi, Thomas B. Moeslund, Thomas Gammeltoft-Hansen

*Corresponding author af dette arbejde

Publikation: Bidrag til bog/antologi/rapportKonferencebidrag i proceedingsForskningpeer review

Abstract

TheDanishasylumadjudicationprocedure isatwo-tiered system,withtheImmigrationServicemakinginitialdeterminationsand theDanishRefugeeAppealsBoard(RAB)automaticallyappealingcases thatarerejected.Thisstudyaimstoemployadeepneuralnetwork(DNN)basedNaturalLanguageProcessing(NLP)pipeline topredictasylum decision-makingoutcomesusingadataset of over 15,515DanishasylumdecisionsprovidedbytheDanishRefugeeAppealsBoard(RAB) betweenJanuary1995andJanuary2021.Thisresearchseekstoimprove theperformanceandeffectivenessofdecision-makinginasylumcasesby addressingkeychallenges,suchasmodelingtheasylumdecision-making problemusingNLP-basedDNNsanddealingwithclassimbalanceissues. OurpreliminaryresultsindicatethatDNN-basedNLPpredictivemodels arecapableof learningmeaningful representationsofasylumcaseswith highprecisionandrecall,particularlywhenclassweightsareconsidered thanthebaselineDNNmodel.
OriginalsprogEngelsk
TitelProceedings of the Seventeenth International Workshop on Juris-Informatics 2023
Antal sider14
Publikationsdato2023
Sider92-105
StatusUdgivet - 2023
BegivenhedInternational Workshop on Juris-Informatics - Kumamoto, Japan
Varighed: 5 jun. 20236 jun. 2023
https://research.nii.ac.jp/~ksatoh/jurisin2023/

Konference

KonferenceInternational Workshop on Juris-Informatics
Land/OmrådeJapan
ByKumamoto
Periode05/06/202306/06/2023
Internetadresse

Citationsformater