Decomposition of sl2^,k⊕sl2^,1 Highest Weight Representations for Generic Level k and Equivalence Between Two-Dimensional CFT Models

Leszek Hadasz*, Błażej Ruba

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

2 Downloads (Pure)

Abstract

We construct highest weight vectors of sl2^,k+1⊕Vir in tensor products of highest weight modules of sl2^,k and sl2^,1, and thus for generic weights we find the decomposition of the tensor product into irreducibles of sl2^k+1⊕Vir. The construction uses Wakimoto representations of sl2^,k, but the obtained vectors can be mapped back to Verma modules. Singularities of this mapping are cancelled by a renormalization. A detailed study of “degenerations” of Wakimoto modules allowed to find the renormalization factor explicitly. The obtained result is a significant step forward in a proof of equivalence of certain two-dimensional CFT models.

OriginalsprogEngelsk
Artikelnummer78
TidsskriftCommunications in Mathematical Physics
Vol/bind406
Udgave nummer4
Sider (fra-til)1-38
ISSN0010-3616
DOI
StatusUdgivet - 2025

Bibliografisk note

Publisher Copyright:
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025.

Citationsformater