Abstract
Originalsprog | Engelsk |
---|---|
Tidsskrift | Journal of Lipid Research |
Vol/bind | 47 |
Udgave nummer | 11 |
Sider (fra-til) | 2392-9 |
Antal sider | 7 |
ISSN | 0022-2275 |
DOI | |
Status | Udgivet - 2006 |
Bibliografisk note
Keywords: Animals; Biological Transport; Epinephrine; Lipids; Male; Microscopy, Confocal; Microscopy, Electron, Transmission; Muscle Contraction; Muscle, Skeletal; Protein Transport; Rats; Rats, Wistar; Sterol Esterase; Time Factors; Vasoconstrictor AgentsAdgang til dokumentet
Citationsformater
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
Decrease in intramuscular lipid droplets and translocation of HSL in response to muscle contraction and epinephrine. / Prats, Clara; Donsmark, Morten; Qvortrup, Klaus; Londos, Constantine; Sztalryd, Carole; Holm, Cecilia; Galbo, Henrik; Ploug, Thorkil.
I: Journal of Lipid Research, Bind 47, Nr. 11, 2006, s. 2392-9.Publikation: Bidrag til tidsskrift › Tidsskriftartikel › Forskning › peer review
}
TY - JOUR
T1 - Decrease in intramuscular lipid droplets and translocation of HSL in response to muscle contraction and epinephrine.
AU - Prats, Clara
AU - Donsmark, Morten
AU - Qvortrup, Klaus
AU - Londos, Constantine
AU - Sztalryd, Carole
AU - Holm, Cecilia
AU - Galbo, Henrik
AU - Ploug, Thorkil
N1 - Keywords: Animals; Biological Transport; Epinephrine; Lipids; Male; Microscopy, Confocal; Microscopy, Electron, Transmission; Muscle Contraction; Muscle, Skeletal; Protein Transport; Rats; Rats, Wistar; Sterol Esterase; Time Factors; Vasoconstrictor Agents
PY - 2006
Y1 - 2006
N2 - A better understanding of skeletal muscle lipid metabolism is needed to identify the molecular mechanisms relating intramuscular triglyceride (IMTG) to muscle metabolism and insulin sensitivity. An increasing number of proteins have been reported to be associated with intracellular triglyceride (TG), among them the PAT family members: perilipin, ADRP (for adipocyte differentiation-related protein), and TIP47 (for tail-interacting protein of 47 kDa). Hormone-sensitive lipase (HSL) is thought to be the major enzyme responsible for IMTG hydrolysis in skeletal muscle. In adipocytes, regulation of HSL by intracellular redistribution has been demonstrated. The existence of such regulatory mechanisms in skeletal muscle has long been hypothesized but has never been demonstrated. The aim of this study was to characterize the PAT family proteins associated with IMTG and to investigate the effect of epinephrine stimulation or muscle contraction on skeletal muscle TG content and HSL intracellular distribution. Rat soleus muscles were either incubated with epinephrine or electrically stimulated for 15 min. Single muscle fibers were used for morphological analysis by confocal and transmission electron microscopy. We show a decrease in IMTG in response to both lipolytic stimuli. Furthermore, we identify two PAT family proteins, ADRP and TIP47, associated with IMTG. Finally, we demonstrate HSL translocation to IMTG and ADRP after stimulation with epinephrine or contraction.
AB - A better understanding of skeletal muscle lipid metabolism is needed to identify the molecular mechanisms relating intramuscular triglyceride (IMTG) to muscle metabolism and insulin sensitivity. An increasing number of proteins have been reported to be associated with intracellular triglyceride (TG), among them the PAT family members: perilipin, ADRP (for adipocyte differentiation-related protein), and TIP47 (for tail-interacting protein of 47 kDa). Hormone-sensitive lipase (HSL) is thought to be the major enzyme responsible for IMTG hydrolysis in skeletal muscle. In adipocytes, regulation of HSL by intracellular redistribution has been demonstrated. The existence of such regulatory mechanisms in skeletal muscle has long been hypothesized but has never been demonstrated. The aim of this study was to characterize the PAT family proteins associated with IMTG and to investigate the effect of epinephrine stimulation or muscle contraction on skeletal muscle TG content and HSL intracellular distribution. Rat soleus muscles were either incubated with epinephrine or electrically stimulated for 15 min. Single muscle fibers were used for morphological analysis by confocal and transmission electron microscopy. We show a decrease in IMTG in response to both lipolytic stimuli. Furthermore, we identify two PAT family proteins, ADRP and TIP47, associated with IMTG. Finally, we demonstrate HSL translocation to IMTG and ADRP after stimulation with epinephrine or contraction.
U2 - 10.1194/jlr.M600247-JLR200
DO - 10.1194/jlr.M600247-JLR200
M3 - Journal article
C2 - 16905768
VL - 47
SP - 2392
EP - 2399
JO - Journal of Lipid Research
JF - Journal of Lipid Research
SN - 0022-2275
IS - 11
ER -