TY - JOUR
T1 - Downscaled climate change projections with uncertainty assessment over India using a high resolution multi-model approach
AU - Kumar, Pankaj
AU - Wiltshire, Andrew
AU - Mathison, Camilla
AU - Asharaf, Shakeel
AU - Ahrens, Bodo
AU - Lucas-Picher, Philippe
AU - Christensen, Jens H.
AU - Gobiet, Andreas
AU - Saeed, Fahad
AU - Hagemann, Stefan
AU - Jacob, Daniela
PY - 2013/12/1
Y1 - 2013/12/1
N2 - This study presents the possible regional climate change over South Asia with a focus over India as simulated by three very high resolution regional climate models (RCMs). One of the most striking results is a robust increase in monsoon precipitation by the end of the 21st century but regional differences in strength. First the ability of RCMs to simulate the monsoon climate is analyzed. For this purpose all three RCMs are forced with ECMWF reanalysis data for the period 1989-2008 at a horizontal resolution of ~. 25. km. The results are compared against independent observations. In order to simulate future climate the models are driven by lateral boundary conditions from two global climate models (GCMs: ECHAM5-MPIOM and HadCM3) using the SRES A1B scenario, except for one RCM, which only used data from one GCM. The results are presented for the full transient simulation period 1970-2099 and also for several time slices. The analysis concentrates on precipitation and temperature over land. All models show a clear signal of gradually wide-spread warming throughout the 21st century. The ensemble-mean warming over India is 1.5. °C at the end of 2050, whereas it is 3.9. °C at the end of century with respect to 1970-1999. The pattern of projected precipitation changes shows considerable spatial variability, with an increase in precipitation over the peninsular of India and coastal areas and, either no change or decrease further inland. From the analysis of a larger ensemble of global climate models using the A1B scenario a wide spread warming (~. 3.2. °C) and an overall increase (~. 8.5%) in mean monsoon precipitation by the end of the 21st century is very likely. The influence of the driving GCM on the projected precipitation change simulated with each RCM is as strong as the variability among the RCMs driven with one.
AB - This study presents the possible regional climate change over South Asia with a focus over India as simulated by three very high resolution regional climate models (RCMs). One of the most striking results is a robust increase in monsoon precipitation by the end of the 21st century but regional differences in strength. First the ability of RCMs to simulate the monsoon climate is analyzed. For this purpose all three RCMs are forced with ECMWF reanalysis data for the period 1989-2008 at a horizontal resolution of ~. 25. km. The results are compared against independent observations. In order to simulate future climate the models are driven by lateral boundary conditions from two global climate models (GCMs: ECHAM5-MPIOM and HadCM3) using the SRES A1B scenario, except for one RCM, which only used data from one GCM. The results are presented for the full transient simulation period 1970-2099 and also for several time slices. The analysis concentrates on precipitation and temperature over land. All models show a clear signal of gradually wide-spread warming throughout the 21st century. The ensemble-mean warming over India is 1.5. °C at the end of 2050, whereas it is 3.9. °C at the end of century with respect to 1970-1999. The pattern of projected precipitation changes shows considerable spatial variability, with an increase in precipitation over the peninsular of India and coastal areas and, either no change or decrease further inland. From the analysis of a larger ensemble of global climate models using the A1B scenario a wide spread warming (~. 3.2. °C) and an overall increase (~. 8.5%) in mean monsoon precipitation by the end of the 21st century is very likely. The influence of the driving GCM on the projected precipitation change simulated with each RCM is as strong as the variability among the RCMs driven with one.
KW - Climate change
KW - HighNoon
KW - Indian summer monsoon
KW - Indices
KW - Regional model
UR - http://www.scopus.com/inward/record.url?scp=84891744679&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2013.01.051
DO - 10.1016/j.scitotenv.2013.01.051
M3 - Journal article
C2 - 23541400
AN - SCOPUS:84891744679
VL - 468-469
SP - S18-S30
JO - Science of the Total Environment
JF - Science of the Total Environment
SN - 0048-9697
ER -