TY - JOUR
T1 - Endurance, aerobic high-intensity, and repeated sprint cycling performance is unaffected by normobaric "Live High-Train Low"
T2 - a double-blind placebo-controlled cross-over study
AU - Bejder, Jacob
AU - Andersen, Andreas Breenfeldt
AU - Buchardt, Rie
AU - Larsson, Tanja Hultengren
AU - Olsen, Niels Vidiendal
AU - Nordsborg, Nikolai Baastrup
N1 - CURIS 2017 NEXS 098
PY - 2017
Y1 - 2017
N2 - The aim was to investigate whether 6 weeks of normobaric "Live High-Train Low" (LHTL) using altitude tents affect highly trained athletes incremental peak power, 26-km time-trial cycling performance, 3-min all-out performance, and 30-s repeated sprint ability. In a double-blinded, placebo-controlled cross-over design, seven highly trained triathletes were exposed to 6 weeks of normobaric hypoxia (LHTL) and normoxia (placebo) for 8 h/day. LHTL exposure consisted of 2 weeks at 2500 m, 2 weeks at 3000 m, and 2 weeks at 3500 m. Power output during an incremental test, ~26-km time trial, 3-min all-out exercise, and 8 × 30 s of all-out sprint was evaluated before and after the intervention. Following at least 8 weeks of wash-out, the subjects crossed over and repeated the procedure. Incremental peak power output was similar after both interventions [LHTL: 375 ± 74 vs. 369 ± 70 W (pre-vs-post), placebo: 385 ± 60 vs. 364 ± 79 W (pre-vs-post)]. Likewise, mean power output was similar between treatments as well as before and after each intervention for time trial [LHTL: 257 ± 49 vs. 254 ± 54 W (pre-vs-post), placebo: 267 ± 57 vs. 267 ± 52 W (pre-vs-post)], and 3-min all-out [LHTL: 366 ± 68 vs. 369 ± 72 W (pre-vs-post), placebo: 365 ± 66 vs. 355 ± 71 W (pre-vs-post)]. Furthermore, peak- and mean power output during repeated sprint exercise was similar between groups at all time points (n = 5). In conclusion, 6 weeks of normobaric LHTL using altitude tents simulating altitudes of 2500-3500 m conducted in a double-blinded, placebo-controlled cross-over design do not affect power output during an incremental test, a ~26-km time-trial test, or 3-min all-out exercise in highly trained triathletes. Furthermore, 30 s of repeated sprint ability was unaltered.
AB - The aim was to investigate whether 6 weeks of normobaric "Live High-Train Low" (LHTL) using altitude tents affect highly trained athletes incremental peak power, 26-km time-trial cycling performance, 3-min all-out performance, and 30-s repeated sprint ability. In a double-blinded, placebo-controlled cross-over design, seven highly trained triathletes were exposed to 6 weeks of normobaric hypoxia (LHTL) and normoxia (placebo) for 8 h/day. LHTL exposure consisted of 2 weeks at 2500 m, 2 weeks at 3000 m, and 2 weeks at 3500 m. Power output during an incremental test, ~26-km time trial, 3-min all-out exercise, and 8 × 30 s of all-out sprint was evaluated before and after the intervention. Following at least 8 weeks of wash-out, the subjects crossed over and repeated the procedure. Incremental peak power output was similar after both interventions [LHTL: 375 ± 74 vs. 369 ± 70 W (pre-vs-post), placebo: 385 ± 60 vs. 364 ± 79 W (pre-vs-post)]. Likewise, mean power output was similar between treatments as well as before and after each intervention for time trial [LHTL: 257 ± 49 vs. 254 ± 54 W (pre-vs-post), placebo: 267 ± 57 vs. 267 ± 52 W (pre-vs-post)], and 3-min all-out [LHTL: 366 ± 68 vs. 369 ± 72 W (pre-vs-post), placebo: 365 ± 66 vs. 355 ± 71 W (pre-vs-post)]. Furthermore, peak- and mean power output during repeated sprint exercise was similar between groups at all time points (n = 5). In conclusion, 6 weeks of normobaric LHTL using altitude tents simulating altitudes of 2500-3500 m conducted in a double-blinded, placebo-controlled cross-over design do not affect power output during an incremental test, a ~26-km time-trial test, or 3-min all-out exercise in highly trained triathletes. Furthermore, 30 s of repeated sprint ability was unaltered.
KW - Altitutde exposure
KW - Endurance
KW - High-intensity
KW - Repeated sprint
U2 - 10.1007/s00421-017-3586-0
DO - 10.1007/s00421-017-3586-0
M3 - Journal article
C2 - 28332025
VL - 117
SP - 979
EP - 988
JO - European Journal of Applied Physiology
JF - European Journal of Applied Physiology
SN - 1439-6319
IS - 5
ER -