Abstract
The Euclid mission objective is to understand why the expansion of the Universe is accelerating through by mapping the geometry of the dark Universe by investigating the distance-redshift relationship and tracing the evolution of cosmic structures. The Euclid project is part of ESA's Cosmic Vision program with its launch planned for 2020 (ref [1]). The NISP (Near Infrared Spectrometer and Photometer) is one of the two Euclid instruments and is operating in the near-IR spectral region (900- 2000nm) as a photometer and spectrometer. The instrument is composed of: - a cold (135K) optomechanical subsystem consisting of a Silicon carbide structure, an optical assembly (corrector and camera lens), a filter wheel mechanism, a grism wheel mechanism, a calibration unit and a thermal control system - a detection subsystem based on a mosaic of 16 HAWAII2RG cooled to 95K with their front-end readout electronic cooled to 140K, integrated on a mechanical focal plane structure made with molybdenum and aluminum. The detection subsystem is mounted on the optomechanical subsystem structure - a warm electronic subsystem (280K) composed of a data processing / detector control unit and of an instrument control unit that interfaces with the spacecraft via a 1553 bus for command and control and via Spacewire links for science data This presentation describes the architecture of the instrument at the end of the phase C (Detailed Design Review), the expected performance, the technological key challenges and preliminary test results obtained for different NISP subsystem breadboards and for the NISP Structural and Thermal model (STM).
Originalsprog | Engelsk |
---|---|
Artikelnummer | UNSP 99040T |
Tidsskrift | Proceedings of S P I E - International Society for Optical Engineering |
Vol/bind | 9904 |
ISSN | 0277-786X |
DOI | |
Status | Udgivet - 26 jun. 2016 |
Adgang til dokumentet
- 99040TForlagets udgivne version, 4,6 MB
Citationsformater
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
Euclid Near Infrared Spectrometer and Photometer instrument concept and first test results obtained for different breadboards models at the end of phase C. / Maciaszek, Thierry; Ealet, Anne; Jahnke, Knud; Prieto, Eric; Mellier, Yannick; Bon, William; Bonefoi, Anne; Carle, Michael; Caillat, Amandine; Costille, Anne; Dormoy, Doriane; Ducret, Franck; Fabron, Christophe; Febvre, Aurélien; Foulon, Benjamin; Garcia, José Garrido; Gimenez, Jean Luc; Grassi, Emmanuel; Mignant, David Le; Pamplona, Tony; Sanchez, Patrice; Gillard, William; Niclas, Mathieu; Secroun, Aurélia; Kubik, Bogna; Amiaux, Jérome; Barrière, Jean Christophe; Berthe, Michel; Rosset, Cyrille; De Rosa, Adriano; Franceschi, Enrico; Morgante, Gianluca; Sortino, Francesca; Trifoglio, Massimo; Valenziano, Luca; Patrizii, Laura; Fornari, F.; Giacomini, F.; Margiotta, A.; Mauri, N.; Pasqualini, L.; Sirri, G.; Spurio, M.; Tenti, M.; Travaglini, R.; Dusini, Stefano; Dal Corso, F.; Sirignano, C.; Ventura, Salvador; Bonoli, Carlotta; Balestra, Andrea; Celi, Eduardo Medina; Farinelli, Ruben; Corcione, Leonardo; Ligori, Sebastiano; Grupp, Frank; Wimmer, Carolin; Hormuth, Felix; Seidel, Gregor; Wachter, Stefanie; Padilla, Cristobal; Lamensans, Mikel; Casas, Ricard; Lloro, Ivan; Toledo-Moreo, Rafael; Gomez, Jaime; Colodro-Conde, Carlos; Lizán, David; Diaz, Jose Javier; Lilje, Per B.; Andersen, Michael I.; Sørensen, Anton N.; Jakobsen, Peter; Hornstrup, Allan; Jessen, Niels Christian; Thizy, Cédric; Holmes, Warren; Israelsson, Ulf; Seiffert, Michael; Waczynski, Augustyn; Laureijs, René J.; Racca, Giuseppe; Salvignol, Jean Christophe; Boenke, Tobias; Strada, Paolo.
I: Proceedings of S P I E - International Society for Optical Engineering, Bind 9904, UNSP 99040T, 26.06.2016.Publikation: Bidrag til tidsskrift › Konferenceartikel › Forskning › peer review
}
TY - GEN
T1 - Euclid Near Infrared Spectrometer and Photometer instrument concept and first test results obtained for different breadboards models at the end of phase C
AU - Maciaszek, Thierry
AU - Ealet, Anne
AU - Jahnke, Knud
AU - Prieto, Eric
AU - Mellier, Yannick
AU - Bon, William
AU - Bonefoi, Anne
AU - Carle, Michael
AU - Caillat, Amandine
AU - Costille, Anne
AU - Dormoy, Doriane
AU - Ducret, Franck
AU - Fabron, Christophe
AU - Febvre, Aurélien
AU - Foulon, Benjamin
AU - Garcia, José Garrido
AU - Gimenez, Jean Luc
AU - Grassi, Emmanuel
AU - Mignant, David Le
AU - Pamplona, Tony
AU - Sanchez, Patrice
AU - Gillard, William
AU - Niclas, Mathieu
AU - Secroun, Aurélia
AU - Kubik, Bogna
AU - Amiaux, Jérome
AU - Barrière, Jean Christophe
AU - Berthe, Michel
AU - Rosset, Cyrille
AU - De Rosa, Adriano
AU - Franceschi, Enrico
AU - Morgante, Gianluca
AU - Sortino, Francesca
AU - Trifoglio, Massimo
AU - Valenziano, Luca
AU - Patrizii, Laura
AU - Fornari, F.
AU - Giacomini, F.
AU - Margiotta, A.
AU - Mauri, N.
AU - Pasqualini, L.
AU - Sirri, G.
AU - Spurio, M.
AU - Tenti, M.
AU - Travaglini, R.
AU - Dusini, Stefano
AU - Dal Corso, F.
AU - Sirignano, C.
AU - Ventura, Salvador
AU - Bonoli, Carlotta
AU - Balestra, Andrea
AU - Celi, Eduardo Medina
AU - Farinelli, Ruben
AU - Corcione, Leonardo
AU - Ligori, Sebastiano
AU - Grupp, Frank
AU - Wimmer, Carolin
AU - Hormuth, Felix
AU - Seidel, Gregor
AU - Wachter, Stefanie
AU - Padilla, Cristobal
AU - Lamensans, Mikel
AU - Casas, Ricard
AU - Lloro, Ivan
AU - Toledo-Moreo, Rafael
AU - Gomez, Jaime
AU - Colodro-Conde, Carlos
AU - Lizán, David
AU - Diaz, Jose Javier
AU - Lilje, Per B.
AU - Andersen, Michael I.
AU - Sørensen, Anton N.
AU - Jakobsen, Peter
AU - Hornstrup, Allan
AU - Jessen, Niels Christian
AU - Thizy, Cédric
AU - Holmes, Warren
AU - Israelsson, Ulf
AU - Seiffert, Michael
AU - Waczynski, Augustyn
AU - Laureijs, René J.
AU - Racca, Giuseppe
AU - Salvignol, Jean Christophe
AU - Boenke, Tobias
AU - Strada, Paolo
PY - 2016/6/26
Y1 - 2016/6/26
N2 - The Euclid mission objective is to understand why the expansion of the Universe is accelerating through by mapping the geometry of the dark Universe by investigating the distance-redshift relationship and tracing the evolution of cosmic structures. The Euclid project is part of ESA's Cosmic Vision program with its launch planned for 2020 (ref [1]). The NISP (Near Infrared Spectrometer and Photometer) is one of the two Euclid instruments and is operating in the near-IR spectral region (900- 2000nm) as a photometer and spectrometer. The instrument is composed of: - a cold (135K) optomechanical subsystem consisting of a Silicon carbide structure, an optical assembly (corrector and camera lens), a filter wheel mechanism, a grism wheel mechanism, a calibration unit and a thermal control system - a detection subsystem based on a mosaic of 16 HAWAII2RG cooled to 95K with their front-end readout electronic cooled to 140K, integrated on a mechanical focal plane structure made with molybdenum and aluminum. The detection subsystem is mounted on the optomechanical subsystem structure - a warm electronic subsystem (280K) composed of a data processing / detector control unit and of an instrument control unit that interfaces with the spacecraft via a 1553 bus for command and control and via Spacewire links for science data This presentation describes the architecture of the instrument at the end of the phase C (Detailed Design Review), the expected performance, the technological key challenges and preliminary test results obtained for different NISP subsystem breadboards and for the NISP Structural and Thermal model (STM).
AB - The Euclid mission objective is to understand why the expansion of the Universe is accelerating through by mapping the geometry of the dark Universe by investigating the distance-redshift relationship and tracing the evolution of cosmic structures. The Euclid project is part of ESA's Cosmic Vision program with its launch planned for 2020 (ref [1]). The NISP (Near Infrared Spectrometer and Photometer) is one of the two Euclid instruments and is operating in the near-IR spectral region (900- 2000nm) as a photometer and spectrometer. The instrument is composed of: - a cold (135K) optomechanical subsystem consisting of a Silicon carbide structure, an optical assembly (corrector and camera lens), a filter wheel mechanism, a grism wheel mechanism, a calibration unit and a thermal control system - a detection subsystem based on a mosaic of 16 HAWAII2RG cooled to 95K with their front-end readout electronic cooled to 140K, integrated on a mechanical focal plane structure made with molybdenum and aluminum. The detection subsystem is mounted on the optomechanical subsystem structure - a warm electronic subsystem (280K) composed of a data processing / detector control unit and of an instrument control unit that interfaces with the spacecraft via a 1553 bus for command and control and via Spacewire links for science data This presentation describes the architecture of the instrument at the end of the phase C (Detailed Design Review), the expected performance, the technological key challenges and preliminary test results obtained for different NISP subsystem breadboards and for the NISP Structural and Thermal model (STM).
KW - Euclid
KW - Infrared
KW - Instrument
KW - NISP
KW - Photometry
KW - Spectroscopy
U2 - 10.1117/12.2232941
DO - 10.1117/12.2232941
M3 - Conference article
AN - SCOPUS:84991316096
VL - 9904
JO - Proceedings of S P I E - International Society for Optical Engineering
JF - Proceedings of S P I E - International Society for Optical Engineering
SN - 0277-786X
M1 - UNSP 99040T
ER -