Abstract
The Complete Calibration of the Color-Redshift Relation (C3R2) survey is obtaining spectroscopic redshifts in order to map the relation between galaxy color and redshift to a depth of i similar to 24.5 (AB). The primary goal is to enable sufficiently accurate photometric redshifts for Stage iv dark energy projects, particularly Euclid and the Nancy Grace Roman Space Telescope (Roman), which are designed to constrain cosmological parameters through weak lensing. We present 676 new high-confidence spectroscopic redshifts obtained by the C3R2 survey in the 2017B-2019B semesters using the DEIMOS, LRIS, and MOSFIRE multiobject spectrographs on the Keck telescopes. Combined with the 4454 redshifts previously published by this project, the C3R2 survey has now obtained and published 5130 high-quality galaxy spectra and redshifts. If we restrict consideration to only the 0.2 < z ( p ) < 2.6 range of interest for the Euclid cosmological goals, then with the current data release, C3R2 has increased the spectroscopic redshift coverage of the Euclid color space from 51% (as reported by Masters et al.) to the current 91%. Once completed and combined with extensive data collected by other spectroscopic surveys, C3R2 should provide the spectroscopic calibration set needed to enable photometric redshifts to meet the cosmology requirements for Euclid, and make significant headway toward solving the problem for Roman.
Originalsprog | Engelsk |
---|---|
Artikelnummer | 9 |
Tidsskrift | Astrophysical Journal Supplement Series |
Vol/bind | 256 |
Udgave nummer | 1 |
Antal sider | 12 |
ISSN | 0067-0049 |
DOI | |
Status | Udgivet - 31 aug. 2021 |
Citationsformater
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
Euclid Preparation. XIV. The Complete Calibration of the Color-Redshift Relation (C3R2) Survey : Data Release 3. / Stanford, S. A.; Masters, D.; Darvish, B.; Stern, D.; Cohen, J. G.; Capak, P.; Hernitschek, N.; Davidzon, I.; Rhodes, J.; Sanders, D. B.; Mobasher, B.; Castander, F. J.; Paltani, S.; Aghanim, N.; Amara, A.; Auricchio, N.; Balestra, A.; Bender, R.; Bodendorf, C.; Bonino, D.; Branchini, E.; Brinchmann, J.; Capobianco, Daniela; Carbone, C.; Carretero, J.; Casas, R.; Castellano, M.; Cavuoti, S.; Cimatti, A.; Cledassou, R.; Conselice, C. J.; Corcione, L.; Costille, A.; Cropper, M.; Degaudenzi, H.; Douspis, M.; Dubath, F.; Dusini, S.; Fosalba, P.; Frailis, M.; Franceschi, E.; Franzetti, P.; Fumana, M.; Garilli, B.; Giocoli, C.; Grupp, F.; Haugan, S. V. H.; Hoekstra, H.; Holmes, W.; Hormuth, F.; Hudelot, P.; Jahnke, K.; Kiessling, A.; Kilbinger, M.; Kitching, T.; Kubik, B.; Kuemmel, M.; Kunz, M.; Kurki-Suonio, H.; Laureijs, R.; Ligori, S.; Lilje, P. B.; Lloro, Ivan; Maiorano, E.; Marggraf, O.; Markovic, K.; Massey, R.; Meneghetti, M.; Meylan, G.; Moscardini, L.; Niemi, S. M.; Padilla, C.; Pasian, F.; Pedersen, K.; Pettorino, V.; Pires, S.; Poncet, M.; Popa, L.; Pozzetti, L.; Raison, F.; Roncarelli, M.; Rossetti, E.; Saglia, R.; Scaramella, R.; Schneider, P.; Secroun, A.; Seidel, G.; Serrano, S.; Sirignano, C.; Sirri, G.; Taylor, A. N.; Teplitz, H.; Tereno; Toledo-Moreo, R.; Valentijn, A.; Valenziano, L.; Verdoeskleijn, G. A.; Wang, Y.; Zamorani, G.; Zoubian, J.; Brescia, M.; Congedo, G.; Conversi, L.; Copin, Y.; Kermiche, S.; Kohley, R.; Medinaceli, E.; Mei, S.; Moresco, M.; Morin, B.; Munari, E.; Polenta, G.; Sureau, F.; Vassallo, T.; Zacchei, A.; Andreon, S.; Aussel, H.; Baccigalupi, C.; Balaguera-Antolinez, A.; Baldi, M.; Bardelli, S.; Biviano, A.; Borsato, E.; Bozzo, E.; Burigana, C.; Cabanac, R.; Camera, S.; Cappi, A.; Carvalho, C. S.; Casas, S.; Castignani, G.; Colodro-Conde, C.; Coupon, J.; Courtois, H. M.; Cuby, J-G; Dasilva, A.; De Latorre, S.; Diferdinando, D.; Duncan, C. A. J.; Dupac, X.; Fabricius, M.; Farina, M.; Farrens, S.; Ferreira, P. G.; Finelli, F.; Flose-Reimberg, P.; Fotopoulou, S.; Galeotta, S.; Ganga, K.; Gillard, W.; Gozaliasl, G.; Gracia-Carpio, J.; Keihanen, E.; Kirkpatrick, C. C.; Lindholm, Ulrika; Mainetti, G.; Maino, D.; Martinet, N.; Marulli, F.; Maturi, M.; Maurogordato, S.; Metcalf, R. B.; Nakajima, R.; Neissner, C.; Nightingale, J. W.; Nucita, A. A.; Patrizii, L.; Potter, D.; Renzi, A.; Riccio, G.; Romelli, E.; Sanchez, A. G.; Sapone, D.; Schirmer, M.; Schultheis, M.; Scottez, V.; Stanco, L.; Tenti, M.; Teyssier, R.; Torradeflot, F.; Valiviita, J.; Viel, M.; Whittaker, L.; Zucca, E.
I: Astrophysical Journal Supplement Series, Bind 256, Nr. 1, 9, 31.08.2021.Publikation: Bidrag til tidsskrift › Tidsskriftartikel › Forskning › peer review
}
TY - JOUR
T1 - Euclid Preparation. XIV. The Complete Calibration of the Color-Redshift Relation (C3R2) Survey
T2 - Data Release 3
AU - Stanford, S. A.
AU - Masters, D.
AU - Darvish, B.
AU - Stern, D.
AU - Cohen, J. G.
AU - Capak, P.
AU - Hernitschek, N.
AU - Davidzon, I.
AU - Rhodes, J.
AU - Sanders, D. B.
AU - Mobasher, B.
AU - Castander, F. J.
AU - Paltani, S.
AU - Aghanim, N.
AU - Amara, A.
AU - Auricchio, N.
AU - Balestra, A.
AU - Bender, R.
AU - Bodendorf, C.
AU - Bonino, D.
AU - Branchini, E.
AU - Brinchmann, J.
AU - Capobianco, Daniela
AU - Carbone, C.
AU - Carretero, J.
AU - Casas, R.
AU - Castellano, M.
AU - Cavuoti, S.
AU - Cimatti, A.
AU - Cledassou, R.
AU - Conselice, C. J.
AU - Corcione, L.
AU - Costille, A.
AU - Cropper, M.
AU - Degaudenzi, H.
AU - Douspis, M.
AU - Dubath, F.
AU - Dusini, S.
AU - Fosalba, P.
AU - Frailis, M.
AU - Franceschi, E.
AU - Franzetti, P.
AU - Fumana, M.
AU - Garilli, B.
AU - Giocoli, C.
AU - Grupp, F.
AU - Haugan, S. V. H.
AU - Hoekstra, H.
AU - Holmes, W.
AU - Hormuth, F.
AU - Hudelot, P.
AU - Jahnke, K.
AU - Kiessling, A.
AU - Kilbinger, M.
AU - Kitching, T.
AU - Kubik, B.
AU - Kuemmel, M.
AU - Kunz, M.
AU - Kurki-Suonio, H.
AU - Laureijs, R.
AU - Ligori, S.
AU - Lilje, P. B.
AU - Lloro, Ivan
AU - Maiorano, E.
AU - Marggraf, O.
AU - Markovic, K.
AU - Massey, R.
AU - Meneghetti, M.
AU - Meylan, G.
AU - Moscardini, L.
AU - Niemi, S. M.
AU - Padilla, C.
AU - Pasian, F.
AU - Pedersen, K.
AU - Pettorino, V.
AU - Pires, S.
AU - Poncet, M.
AU - Popa, L.
AU - Pozzetti, L.
AU - Raison, F.
AU - Roncarelli, M.
AU - Rossetti, E.
AU - Saglia, R.
AU - Scaramella, R.
AU - Schneider, P.
AU - Secroun, A.
AU - Seidel, G.
AU - Serrano, S.
AU - Sirignano, C.
AU - Sirri, G.
AU - Taylor, A. N.
AU - Teplitz, H.
AU - Tereno, null
AU - Toledo-Moreo, R.
AU - Valentijn, A.
AU - Valenziano, L.
AU - Verdoeskleijn, G. A.
AU - Wang, Y.
AU - Zamorani, G.
AU - Zoubian, J.
AU - Brescia, M.
AU - Congedo, G.
AU - Conversi, L.
AU - Copin, Y.
AU - Kermiche, S.
AU - Kohley, R.
AU - Medinaceli, E.
AU - Mei, S.
AU - Moresco, M.
AU - Morin, B.
AU - Munari, E.
AU - Polenta, G.
AU - Sureau, F.
AU - Vassallo, T.
AU - Zacchei, A.
AU - Andreon, S.
AU - Aussel, H.
AU - Baccigalupi, C.
AU - Balaguera-Antolinez, A.
AU - Baldi, M.
AU - Bardelli, S.
AU - Biviano, A.
AU - Borsato, E.
AU - Bozzo, E.
AU - Burigana, C.
AU - Cabanac, R.
AU - Camera, S.
AU - Cappi, A.
AU - Carvalho, C. S.
AU - Casas, S.
AU - Castignani, G.
AU - Colodro-Conde, C.
AU - Coupon, J.
AU - Courtois, H. M.
AU - Cuby, J-G
AU - Dasilva, A.
AU - De Latorre, S.
AU - Diferdinando, D.
AU - Duncan, C. A. J.
AU - Dupac, X.
AU - Fabricius, M.
AU - Farina, M.
AU - Farrens, S.
AU - Ferreira, P. G.
AU - Finelli, F.
AU - Flose-Reimberg, P.
AU - Fotopoulou, S.
AU - Galeotta, S.
AU - Ganga, K.
AU - Gillard, W.
AU - Gozaliasl, G.
AU - Gracia-Carpio, J.
AU - Keihanen, E.
AU - Kirkpatrick, C. C.
AU - Lindholm, Ulrika
AU - Mainetti, G.
AU - Maino, D.
AU - Martinet, N.
AU - Marulli, F.
AU - Maturi, M.
AU - Maurogordato, S.
AU - Metcalf, R. B.
AU - Nakajima, R.
AU - Neissner, C.
AU - Nightingale, J. W.
AU - Nucita, A. A.
AU - Patrizii, L.
AU - Potter, D.
AU - Renzi, A.
AU - Riccio, G.
AU - Romelli, E.
AU - Sanchez, A. G.
AU - Sapone, D.
AU - Schirmer, M.
AU - Schultheis, M.
AU - Scottez, V.
AU - Stanco, L.
AU - Tenti, M.
AU - Teyssier, R.
AU - Torradeflot, F.
AU - Valiviita, J.
AU - Viel, M.
AU - Whittaker, L.
AU - Zucca, E.
PY - 2021/8/31
Y1 - 2021/8/31
N2 - The Complete Calibration of the Color-Redshift Relation (C3R2) survey is obtaining spectroscopic redshifts in order to map the relation between galaxy color and redshift to a depth of i similar to 24.5 (AB). The primary goal is to enable sufficiently accurate photometric redshifts for Stage iv dark energy projects, particularly Euclid and the Nancy Grace Roman Space Telescope (Roman), which are designed to constrain cosmological parameters through weak lensing. We present 676 new high-confidence spectroscopic redshifts obtained by the C3R2 survey in the 2017B-2019B semesters using the DEIMOS, LRIS, and MOSFIRE multiobject spectrographs on the Keck telescopes. Combined with the 4454 redshifts previously published by this project, the C3R2 survey has now obtained and published 5130 high-quality galaxy spectra and redshifts. If we restrict consideration to only the 0.2 < z ( p ) < 2.6 range of interest for the Euclid cosmological goals, then with the current data release, C3R2 has increased the spectroscopic redshift coverage of the Euclid color space from 51% (as reported by Masters et al.) to the current 91%. Once completed and combined with extensive data collected by other spectroscopic surveys, C3R2 should provide the spectroscopic calibration set needed to enable photometric redshifts to meet the cosmology requirements for Euclid, and make significant headway toward solving the problem for Roman.
AB - The Complete Calibration of the Color-Redshift Relation (C3R2) survey is obtaining spectroscopic redshifts in order to map the relation between galaxy color and redshift to a depth of i similar to 24.5 (AB). The primary goal is to enable sufficiently accurate photometric redshifts for Stage iv dark energy projects, particularly Euclid and the Nancy Grace Roman Space Telescope (Roman), which are designed to constrain cosmological parameters through weak lensing. We present 676 new high-confidence spectroscopic redshifts obtained by the C3R2 survey in the 2017B-2019B semesters using the DEIMOS, LRIS, and MOSFIRE multiobject spectrographs on the Keck telescopes. Combined with the 4454 redshifts previously published by this project, the C3R2 survey has now obtained and published 5130 high-quality galaxy spectra and redshifts. If we restrict consideration to only the 0.2 < z ( p ) < 2.6 range of interest for the Euclid cosmological goals, then with the current data release, C3R2 has increased the spectroscopic redshift coverage of the Euclid color space from 51% (as reported by Masters et al.) to the current 91%. Once completed and combined with extensive data collected by other spectroscopic surveys, C3R2 should provide the spectroscopic calibration set needed to enable photometric redshifts to meet the cosmology requirements for Euclid, and make significant headway toward solving the problem for Roman.
KW - PHOTOMETRIC REDSHIFTS
KW - DISTRIBUTIONS
U2 - 10.3847/1538-4365/ac0833
DO - 10.3847/1538-4365/ac0833
M3 - Journal article
VL - 256
JO - Astrophysical Journal
JF - Astrophysical Journal
SN - 0067-0049
IS - 1
M1 - 9
ER -