TY - JOUR
T1 - Exercise training favors increased insulin-stimulated glucose uptake in skeletal muscle in contrast to adipose tissue
T2 - A randomized study using FDG PET imaging
AU - Reichkendler, Michala Holm
AU - Auerbach, Pernille Landrock
AU - Larsen, Mads Rosenkilde
AU - Christensen, Anders N.
AU - Holm, Søren
AU - Petersen, Martin Bæk
AU - Lagerberg, Anders
AU - Larsson, Henrik B W
AU - Rostrup, Egill
AU - Mosbech, Thomas Hammershaimb
AU - Sjödin, Anders Mikael
AU - Kjaer, Andreas
AU - Ploug, Thorkil
AU - Hoejgaard, Liselotte
AU - Stallknecht, Bente Merete
N1 - CURIS 2013 NEXS 172
PY - 2013/8/15
Y1 - 2013/8/15
N2 - Physical exercise increases peripheral insulin sensitivity, but regional differences are poorly elucidated in humans. We investigated the effect of aerobic exercise training on insulin-stimulated glucose uptake in five individual femoral muscle groups and four different adipose tissue regions using dynamic (femoral region) and static (abdominal region) 2-deoxy-2-(18F)fluoro-D-glucose (FDG) PET/CT methodology during steady state insulin infusion (40 mU*m-2*min-1). Body composition was measured by Dual X-ray Absorptiometry and MRI. Sixty-one healthy, sedentary (VO2max: 36(5) ml*kg-1*min-1)(mean(SD)), moderately overweight (BMI: 28.1(1.8)), young (age: 30(6) years) men were randomized to sedentary living (CON; n=17 completers), moderate (MOD; 300 kcal/day, n=18) or high (HIGH; 600 kcal/day, n=18) dose physical exercise for 11 weeks. At baseline, insulin-stimulated glucose uptake was highest in femoral skeletal muscle followed by intraperitoneal visceral adipose tissue (VAT), retroperitoneal VAT, abdominal (anterior+posterior) subcutaneous adipose tissue (SAT) and femoral SAT (P<0.0001 between tissues). Metabolic rate of glucose increased similarly (~30%) in the two exercise groups in femoral skeletal muscle (MOD: 24[9; 39] µmol*kg-1*min-1, P=0.004; HIGH: 22[9; 35] µmol*kg-1*min-1, P=0.003) (mean[95% CI]) and in five individual femoral muscle groups but not in femoral SAT. Standardized Uptake Value of FDG decreased ~24% in anterior abdominal SAT and ~20% in posterior abdominal SAT when compared to CON but not in either intra- or retroperitoneal VAT. Total adipose tissue mass decreased in both exercise groups and the decrease was distributed equally among subcutaneous and intraabdominal depots. In conclusion, aerobic exercise training increases insulin-stimulated glucose uptake in skeletal muscle but not in adipose tissue, which demonstrates some interregional differences.
AB - Physical exercise increases peripheral insulin sensitivity, but regional differences are poorly elucidated in humans. We investigated the effect of aerobic exercise training on insulin-stimulated glucose uptake in five individual femoral muscle groups and four different adipose tissue regions using dynamic (femoral region) and static (abdominal region) 2-deoxy-2-(18F)fluoro-D-glucose (FDG) PET/CT methodology during steady state insulin infusion (40 mU*m-2*min-1). Body composition was measured by Dual X-ray Absorptiometry and MRI. Sixty-one healthy, sedentary (VO2max: 36(5) ml*kg-1*min-1)(mean(SD)), moderately overweight (BMI: 28.1(1.8)), young (age: 30(6) years) men were randomized to sedentary living (CON; n=17 completers), moderate (MOD; 300 kcal/day, n=18) or high (HIGH; 600 kcal/day, n=18) dose physical exercise for 11 weeks. At baseline, insulin-stimulated glucose uptake was highest in femoral skeletal muscle followed by intraperitoneal visceral adipose tissue (VAT), retroperitoneal VAT, abdominal (anterior+posterior) subcutaneous adipose tissue (SAT) and femoral SAT (P<0.0001 between tissues). Metabolic rate of glucose increased similarly (~30%) in the two exercise groups in femoral skeletal muscle (MOD: 24[9; 39] µmol*kg-1*min-1, P=0.004; HIGH: 22[9; 35] µmol*kg-1*min-1, P=0.003) (mean[95% CI]) and in five individual femoral muscle groups but not in femoral SAT. Standardized Uptake Value of FDG decreased ~24% in anterior abdominal SAT and ~20% in posterior abdominal SAT when compared to CON but not in either intra- or retroperitoneal VAT. Total adipose tissue mass decreased in both exercise groups and the decrease was distributed equally among subcutaneous and intraabdominal depots. In conclusion, aerobic exercise training increases insulin-stimulated glucose uptake in skeletal muscle but not in adipose tissue, which demonstrates some interregional differences.
U2 - 10.1152/ajpendo.00128.2013
DO - 10.1152/ajpendo.00128.2013
M3 - Journal article
C2 - 23800880
VL - 305
SP - E496-506
JO - American Journal of Physiology - Endocrinology and Metabolism
JF - American Journal of Physiology - Endocrinology and Metabolism
SN - 0193-1849
IS - 4
ER -