Forecasting of Continuous Vital Sign Using Multivariate Auto-Regressive Models

Soren M. Rasmussen*, Jesper Molgaard, Camilla Haahr-Raunkjaer, Christian S. Meyhoff, Eske Aasvang, Helge B.D. Sorensen

*Corresponding author af dette arbejde

Publikation: Bidrag til bog/antologi/rapportKonferencebidrag i proceedingsForskningpeer review

1 Citationer (Scopus)
11 Downloads (Pure)

Abstract

This project assessed the use of multivariate auto-regressive (MAR) models to create forecasts of continuous vital signs in hospitalized patients. A total of 20 hours continuous (1/60Hz) heart rate and respiration rate from eight postoperative patients, where used to fit a centered MAR model for forecasting in windows of 15 minutes. The model was fitted using Markov Chain Monte Carlo sampling, and the model was evaluated on data from five additional patients. The results demonstrate an average RMSE in the forecast window of 11.4 (SD: 7.30) beats per minute for heart rate and 3.3 (SD:1.3) breaths per minute for respiration rate. These results indicate potential for forecasting vital signs in a clinical setting.

OriginalsprogEngelsk
Titel44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2022
Antal sider4
ForlagIEEE
Publikationsdato2022
Sider385-388
ISBN (Elektronisk)9781728127828
DOI
StatusUdgivet - 2022
Begivenhed44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2022 - Glasgow, Storbritannien
Varighed: 11 jul. 202215 jul. 2022

Konference

Konference44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2022
Land/OmrådeStorbritannien
ByGlasgow
Periode11/07/202215/07/2022
SponsorVerasonics
NavnProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Vol/bind2022-July
ISSN1557-170X

Bibliografisk note

Publisher Copyright:
© 2022 IEEE.

Citationsformater