Gait training facilitates push-off and improves gait symmetry in children with cerebral palsy

Jakob Lorentzen, Rasmus Frisk, Maria Willerslev-Olsen, Laurent Bouyer, Simon Francis Farmer, Jens Bo Nielsen

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

11 Citationer (Scopus)
47 Downloads (Pure)

Abstract

BACKGROUND: Human walking involves a rapid and powerful contraction of ankle plantar flexors during push-off in late stance.

OBJECTIVE: Here we investigated whether impaired push-off force contributes to gait problems in children with cerebral palsy (CP) and whether it may be improved by intensive gait training.

METHODS: Sixteen children with CP (6-15 years) and fourteen typically developing (TD) children (4-15 years) were recruited. Foot pressure was measured by insoles and gait kinematics were recorded by 3-dimensional video analysis during treadmill and overground walking. The peak derivative of ground reaction force at push off (dPF) was calculated from the foot pressure measurements. Maximal voluntary plantar flexion (MVC) was measured while seated. Measurements were performed before and after a control period and after 4 weeks of 30 minutes daily inclined treadmill training.

RESULTS: dPF and MVC were significantly lower in children with CP on the most affected (MA) as compared to TD children (p < .001). dPF was lower on the MA leg as compared to the less affected (LA) leg in children with CP (p < .05). Following gait training, increases in dPF (p < .001) and MVC (p < .01) were observed for the MA leg. Following gait training children with CP showed similar timing of dPF and similar stance phase duration on both legs indicating improved symmetry of gait. These effects were also shown during overground walking.

CONCLUSION: Impaired ability to voluntarily activate ankle plantar flexors and produce a rapid and powerful push-off during late stance are of importance for impaired gait function in children with CP. Intensive treadmill training may facilitate the drive to ankle plantar flexors and reduce gait asymmetry during both treadmill and overground walking.

OriginalsprogEngelsk
Artikelnummer102565
TidsskriftHuman Movement Science
Vol/bind69
Antal sider12
ISSN0167-9457
DOI
StatusUdgivet - 2020

Bibliografisk note

Copyright © 2019 Elsevier B.V. All rights reserved.

Citationsformater