Generative AI entails a credit–blame asymmetry

Sebastian Porsdam Mann*, Brian D. Earp, Sven Nyholm, John Danaher, Nikolaj Møller, Hilary Bowman-Smart, Joshua Hatherley, Julian Koplin, Monika Plozza, Daniel Rodger, Peter V. Treit, Gregory Renard, John McMillan, Julian Savulescu

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskriftKommentar/debatForskningpeer review

41 Citationer (Scopus)

Abstract

Generative AI programs can produce high-quality written and visual content that may be used for good or ill. We argue that a credit–blame asymmetry arises for assigning responsibility for these outputs and discuss urgent ethical and policy implications focused on large-scale language models.
OriginalsprogEngelsk
TidsskriftNature Machine Intelligence
Vol/bind5
Udgave nummer5
Sider (fra-til)472-475
Antal sider4
DOI
StatusUdgivet - 2023

Bibliografisk note

Funding Information:
We wish to thank an anonymous reviewer for very helpful and timely suggestions for improvements to an earlier version of this article.

Citationsformater