Genes Involved in the Evolution of Herbivory by a Leaf-Mining, Drosophilid Fly

Noah K. Whiteman, Andrew D. Gloss, Timothy B. Sackton, Simon C. Groen, Parris T. Humphrey, Richard T. Lapoint, Ida Elken Sønderby, Barbara Ann Halkier, Christine Kocks, Frederick M. Ausubel, Naomi E. Pierce

    Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

    46 Citationer (Scopus)

    Abstract

    Herbivorous insects are among the most successful radiations of life. However, we know little about the processes underpinning the evolution of herbivory. We examined the evolution of herbivory in the fly, Scaptomyza flava, whose larvae are leaf miners on species of Brassicaceae, including the widely studied reference plant, Arabidopsis thaliana (Arabidopsis). Scaptomyza flava is phylogenetically nested within the paraphyletic genus Drosophila, and the whole genome sequences available for 12 species of Drosophila facilitated phylogenetic analysis and assembly of a transcriptome for S. flava. A time-calibrated phylogeny indicated that leaf mining in Scaptomyza evolved between 6 and 16 million years ago. Feeding assays showed that biosynthesis of glucosinolates, the major class of antiherbivore chemical defense compounds in mustard leaves, was upregulated by S. flava larval feeding. The presence of glucosinolates in wild-type (WT) Arabidopsis plants reduced S. flava larval weight gain and increased egg-adult development time relative to flies reared in glucosinolate knockout (GKO) plants. An analysis of gene expression differences in 5-day-old larvae reared on WT versus GKO plants showed a total of 341 transcripts that were differentially regulated by glucosinolate uptake in larval S. flava. Of these, approximately a third corresponded to homologs of Drosophila melanogaster genes associated with starvation, dietary toxin-, heat-, oxidation-, and aging-related stress. The upregulated transcripts exhibited elevated rates of protein evolution compared with unregulated transcripts. The remaining differentially regulated transcripts also contained a higher proportion of novel genes than the unregulated transcripts. Thus, the transition to herbivory in Scaptomyza appears to be coupled with the evolution of novel genes and the co-option of conserved stress-related genes.
    OriginalsprogEngelsk
    TidsskriftGenome Biology and Evolution
    Vol/bind4
    Udgave nummer9
    Sider (fra-til)900-916
    Antal sider17
    ISSN1759-6653
    DOI
    StatusUdgivet - 2012

    Citationsformater