TY - JOUR
T1 - Global analysis of multi-mutants to improve protein function
AU - Johansson, Kristoffer E
AU - Lindorff-Larsen, Kresten
AU - Winther, Jakob R
N1 - Copyright © 2023 The Author(s). Published by Elsevier Ltd.. All rights reserved.
PY - 2023
Y1 - 2023
N2 - The identification of amino acid substitutions that both enhance the stability and function of a protein is a key challenge in protein engineering. Technological advances have enabled assaying thousands of protein variants in a single high-throughput experiment, and more recent studies use such data in protein engineering. We present a Global Multi-Mutant Analysis (GMMA) that exploits the presence of multiply-substituted variants to identify individual amino acid substitutions that are beneficial for the stability and function across a large library of protein variants. We have applied GMMA to a previously published experiment reporting on >54,000 variants of green fluorescent protein (GFP), each with known fluorescence output, and each carrying 1-15 amino acid substitutions (Sarkisyan et al., 2016). The GMMA method achieves a good fit to this dataset while being analytically transparent. We show experimentally that the six top-ranking substitutions progressively enhance GFP. More broadly, using only a single experiment as input our analysis recovers nearly all the substitutions previously reported to be beneficial for GFP folding and function. In conclusion, we suggest that large libraries of multiply-substituted variants may provide a unique source of information for protein engineering.
AB - The identification of amino acid substitutions that both enhance the stability and function of a protein is a key challenge in protein engineering. Technological advances have enabled assaying thousands of protein variants in a single high-throughput experiment, and more recent studies use such data in protein engineering. We present a Global Multi-Mutant Analysis (GMMA) that exploits the presence of multiply-substituted variants to identify individual amino acid substitutions that are beneficial for the stability and function across a large library of protein variants. We have applied GMMA to a previously published experiment reporting on >54,000 variants of green fluorescent protein (GFP), each with known fluorescence output, and each carrying 1-15 amino acid substitutions (Sarkisyan et al., 2016). The GMMA method achieves a good fit to this dataset while being analytically transparent. We show experimentally that the six top-ranking substitutions progressively enhance GFP. More broadly, using only a single experiment as input our analysis recovers nearly all the substitutions previously reported to be beneficial for GFP folding and function. In conclusion, we suggest that large libraries of multiply-substituted variants may provide a unique source of information for protein engineering.
U2 - 10.1016/j.jmb.2023.168034
DO - 10.1016/j.jmb.2023.168034
M3 - Journal article
C2 - 36863661
VL - 435
JO - Journal of Molecular Biology
JF - Journal of Molecular Biology
SN - 0022-2836
IS - 8
M1 - 168034
ER -