TY - JOUR
T1 - Glucose supply and glycolysis inhibition shape the clinical fate of Staphylococcus epidermidis-infected preterm newborns
AU - Muk (Mudi), Tik
AU - Brunse, Anders
AU - Henriksen, Nicole Lind
AU - Aasmul-Olsen, Karoline
AU - Nguyen, Duc Ninh
PY - 2022
Y1 - 2022
N2 - Preterm infants are susceptible to bloodstream infection by coagulase-negative staphylococci (CONS) that can lead to sepsis. High parenteral glucose supplement is commonly used to support their growth and energy expenditure, but may exceed endogenous regulation during infection, causing dysregulated immune response and clinical deterioration. Using a preterm piglet model of neonatal CONS sepsis induced by Staphylococcus epidermidis infection, we demonstrate the delicate interplay between immunity and glucose metabolism to regulate the host infection response. Circulating glucose levels, glycolysis and inflammatory response to infection are closely connected across the states of tolerance, resistance and immunoparalysis. Further, high parenteral glucose provision during infection induces hyperglycemia, elevated glycolysis and inflammation, leading to metabolic acidosis and sepsis, whereas glucose restricted individuals are clinically unaffected with increased gluconeogenesis to maintain moderate hypoglycemia. Finally, standard glucose supply maintaining normoglycemia or pharmacological glycolysis inhibition enhances bacterial clearance and dampens inflammation but fails to prevent sepsis. Our results uncover how blood glucose and glycolysis controls circulating immune responses, in turn determining the clinical fate of CONS infected preterm individuals. This questions the current practice of parenteral glucose supply for preterm infants during infection.
AB - Preterm infants are susceptible to bloodstream infection by coagulase-negative staphylococci (CONS) that can lead to sepsis. High parenteral glucose supplement is commonly used to support their growth and energy expenditure, but may exceed endogenous regulation during infection, causing dysregulated immune response and clinical deterioration. Using a preterm piglet model of neonatal CONS sepsis induced by Staphylococcus epidermidis infection, we demonstrate the delicate interplay between immunity and glucose metabolism to regulate the host infection response. Circulating glucose levels, glycolysis and inflammatory response to infection are closely connected across the states of tolerance, resistance and immunoparalysis. Further, high parenteral glucose provision during infection induces hyperglycemia, elevated glycolysis and inflammation, leading to metabolic acidosis and sepsis, whereas glucose restricted individuals are clinically unaffected with increased gluconeogenesis to maintain moderate hypoglycemia. Finally, standard glucose supply maintaining normoglycemia or pharmacological glycolysis inhibition enhances bacterial clearance and dampens inflammation but fails to prevent sepsis. Our results uncover how blood glucose and glycolysis controls circulating immune responses, in turn determining the clinical fate of CONS infected preterm individuals. This questions the current practice of parenteral glucose supply for preterm infants during infection.
U2 - 10.1172/jci.insight.157234
DO - 10.1172/jci.insight.157234
M3 - Journal article
C2 - 35503431
SN - 2379-3708
VL - 7
JO - JCI Insight
JF - JCI Insight
IS - 11
M1 - e157234
ER -