Group Convolutional Neural Networks for DWI Segmentation

Renfei Liu, Francois Bernard Lauze, Erik J. Bekkers, Kenny Erleben

Publikation: Bidrag til tidsskriftKonferenceartikel

4 Citationer (Scopus)
22 Downloads (Pure)

Abstract

We present a Group Convolutional Network for Segmentation of Diffusion Weighted Imaging data (DWI). The network incorporates group actions that are natural for this type of data, in the form of
equivariant convolutions, i.e., roto-translation equivariant convolutions. The equivariance property provides an important inductive bias and may alleviate the need for data augmentation strategies. Instead of performing group equivariant convolutions via spectral (Fourier-based) approaches, as is common for
equivariance, we implement direct and light-weight regular group convolutions. We study the effect of equivariance and weight sharing over
on performances of the networks on DWI scans from the Human Connectome project. We show how that full
equivariance improves segmentations, while limiting the number of learnable parameters.
OriginalsprogEngelsk
TidsskriftProceedings of Machine Learning Research
Vol/bind2022
Udgave nummer1
Sider (fra-til)1-11
ISSN2640-3498
StatusUdgivet - 2022
BegivenhedGeoMedIA Workshop 2022: Geometric Deep Learning in Medical Image Analysis - Amsterdam, Holland
Varighed: 18 nov. 2022 → …

Konference

KonferenceGeoMedIA Workshop 2022
Land/OmrådeHolland
ByAmsterdam
Periode18/11/2022 → …

Citationsformater