TY - JOUR
T1 - High concentrations of casein proteins exacerbate radical chain reactions and increase the extent of oxidative damage
AU - Fuentes-Lemus, Eduardo
AU - Jiang, Shuwen
AU - Hägglund, Per
AU - Davies, Michael J.
N1 - Publisher Copyright:
© 2021 The Author(s)
PY - 2021
Y1 - 2021
N2 - The co-existence of proteins, lipids and riboflavin (RF) in milk together with the harsh conditions encountered during processing (e.g. high temperatures, light exposure) results in oxidative damage. Proteins represent ~30 % of the dry mass of milk, with caseins accounting for ~80 % (28 g L−1). Due to their high abundance and amphiphilic nature, caseins are targets for both hydrophilic and lipophilic oxidants. Although caseins are key milk components, and highly abundant, most previous work has employed non-biological dilute solutions. In this work we have investigated oxidative modification of αs-, β- and κ-caseins elicited by AAPH-derived oxygenated radicals, or RF-mediated photo-oxidation, at both low and high protein concentrations, to determine whether and how oxidative damage and resulting structural modifications are modulated by the protein concentration. The data obtained demonstrate that the pathways leading to casein modification are dependent on both the protein concentration and the oxidant employed. AAPH-mediated oxidation was more efficient than RF-induced photo-oxidation, in respect to the number of moles of amino acid side-chains consumed per mole of oxidant generated, the extent of damage detected by SDS-PAGE, and immunoblot detection of oxidation products. Quantification of amino acid consumption and product generation, using UPLC and LC/MS, demonstrates the occurrence of short chain reactions, with the chain-length dependent on the protein concentration. LC/MS peptide mass mapping analyses provide data on the sites of modification. Molecular crowding, arising from high casein concentrations and casein-casein interactions, therefore favors the occurrence of radical chain events that enhance the extent of protein oxidative damage.
AB - The co-existence of proteins, lipids and riboflavin (RF) in milk together with the harsh conditions encountered during processing (e.g. high temperatures, light exposure) results in oxidative damage. Proteins represent ~30 % of the dry mass of milk, with caseins accounting for ~80 % (28 g L−1). Due to their high abundance and amphiphilic nature, caseins are targets for both hydrophilic and lipophilic oxidants. Although caseins are key milk components, and highly abundant, most previous work has employed non-biological dilute solutions. In this work we have investigated oxidative modification of αs-, β- and κ-caseins elicited by AAPH-derived oxygenated radicals, or RF-mediated photo-oxidation, at both low and high protein concentrations, to determine whether and how oxidative damage and resulting structural modifications are modulated by the protein concentration. The data obtained demonstrate that the pathways leading to casein modification are dependent on both the protein concentration and the oxidant employed. AAPH-mediated oxidation was more efficient than RF-induced photo-oxidation, in respect to the number of moles of amino acid side-chains consumed per mole of oxidant generated, the extent of damage detected by SDS-PAGE, and immunoblot detection of oxidation products. Quantification of amino acid consumption and product generation, using UPLC and LC/MS, demonstrates the occurrence of short chain reactions, with the chain-length dependent on the protein concentration. LC/MS peptide mass mapping analyses provide data on the sites of modification. Molecular crowding, arising from high casein concentrations and casein-casein interactions, therefore favors the occurrence of radical chain events that enhance the extent of protein oxidative damage.
KW - Casein
KW - Crowded environments
KW - Peroxyl radicals
KW - Protein oxidation
KW - Radical chain propagation
KW - Riboflavin
UR - http://www.scopus.com/inward/record.url?scp=85111283237&partnerID=8YFLogxK
U2 - 10.1016/j.foodhyd.2021.107060
DO - 10.1016/j.foodhyd.2021.107060
M3 - Journal article
AN - SCOPUS:85111283237
VL - 121
JO - Food Hydrocolloids
JF - Food Hydrocolloids
SN - 0268-005X
M1 - 107060
ER -