Homotopy theory of algebraic quantum field theories

Marco Benini, Alexander Schenkel, Lukas Woike

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

30 Citationer (Scopus)

Abstract

Motivated by gauge theory, we develop a general framework for chain complex-valued algebraic quantum field theories. Building upon our recent operadic approach to this subject, we show that the category of such theories carries a canonical model structure and explain the important conceptual and also practical consequences of this result. As a concrete application, we provide a derived version of Fredenhagen’s universal algebra construction, which is relevant e.g. for the BRST/BV formalism. We further develop a homotopy theoretical generalization of algebraic quantum field theory with a particular focus on the homotopy-coherent Einstein causality axiom. We provide examples of such homotopy-coherent theories via (1) smooth normalized cochain algebras on ∞-stacks, and (2) fiber-wise groupoid cohomology of a category fibered in groupoids with coefficients in a strict quantum field theory.
OriginalsprogEngelsk
TidsskriftLetters in Mathematical Physics
Vol/bind109
Sider (fra-til)1487–1532
ISSN0377-9017
DOI
StatusUdgivet - 2019
Udgivet eksterntJa

Citationsformater