Bacillus subtilis promotes plant phosphorus (P) acquisition through P solubilization and stimulation of root and root hair growth

Camilla Niketa Gadomska Jensen, Janet Ka Yan Pang, Michele Gottardi, Stjepan Krešimir Kračun, Birgit Albrecht Svendsen, Kristian Fog Nielsen, Ákos T. Kovács, Lars Moelbak, Lorenzo Fimognari, Søren Husted, Alexander Schulz*

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

3 Downloads (Pure)

Abstract

Bacteria can be applied as biofertilizers to improve crop growth in phosphorus (P)-limited conditions. However, their mode of action in a soil environment is still elusive. We used the strain ALC_02 as a case study to elucidate how Bacillus subtilis affects dwarf tomato cultivated in soil-filled rhizoboxes over time. ALC_02 improved plant P acquisition by increasing the size and P content of P-limited plants. We assessed three possible mechanisms, namely root growth stimulation, root hair elongation, and solubilization of soil P. ALC_02 produced auxin, and inoculation with ALC_02 promoted root growth. ALC_02 promoted root hair elongation as the earliest observed response and colonized root hairs specifically. Root and root hair growth stimulation was associated with a subsequent increase in plant P content, indicating that a better soil exploration by the root system improved plant P acquisition. Furthermore, ALC_02 affected the plant-available P content in sterilized soil differently over time and released P from native P pools in the soil. Collectively, ALC_02 exhibited all three mechanisms in a soil environment. To our knowledge, bacterial P biofertilizers have not been reported to colonize and elongate root hairs in the soil so far, and we propose that these traits contribute to the overall effect of ALC_02. The knowledge gained in this research can be applied in the future quest for bacterial P biofertilizers, where we recommend assessing all three parameters, not only root growth and P solubilization, but also root hair elongation. This will ultimately support the development of sustainable agricultural practices.

OriginalsprogEngelsk
Artikelnummere14338
TidsskriftPhysiologia Plantarum
Vol/bind176
Udgave nummer3
Antal sider13
ISSN0031-9317
DOI
StatusUdgivet - 2024

Bibliografisk note

Funding Information:
The project was funded by Innovation Fund Denmark (0153\u201000021B), \u00C1TK was supported by the Novo Nordisk Foundation within the INTERACT project of the Collaborative Crop Resiliency Program (NNF19SA0059360).

Publisher Copyright:
© 2024 The Authors. Physiologia Plantarum published by John Wiley & Sons Ltd on behalf of Scandinavian Plant Physiology Society.

Citationsformater