TY - JOUR
T1 - Ibogalogs decrease neuropathic pain in mice through a mechanism involving crosstalk between 5-HT2A and mGlu2 receptors
AU - Arias, Hugo R.
AU - Micheli, Laura
AU - Jensen, Anders A.
AU - Galant, Sonya
AU - Vandermoere, Franck
AU - Venturi, Daniel
AU - Manetti, Dina
AU - Romanelli, Maria Novella
AU - Ghelardini, Carla
AU - Marin, Philippe
AU - Di Cesare Mannelli, Lorenzo
N1 - Publisher Copyright:
© 2025 The Authors
PY - 2025
Y1 - 2025
N2 - The objective of this study was to determine the anti-neuropathic activity of a variety of ibogalogs, including tabernanthalog (TBG), ibogaminalog (DM506), ibogainalog (IBG), nor-IBG, catharanthalog (CAG), and PNU-22394 using the oxaliplatin (OXA) neuropathic pain model in mice, and to investigate whether there is crosstalk between the 5-HT2A and mGlu2 receptors. All tested ibogalogs induce pain-relieving activity using both cold plate and paw pressure tests, without toxic effects. The most potent ibogalogs were IBG and CAG, whereas nor-IBG and DM506 were the longest-acting compounds. The anti-neuropathic activity of ibogalogs was inhibited by ketanserin, a 5-HT2A receptor antagonist, indicating a role for the 5-HT2A receptor for these effects. Sub-threshold doses of IBG (1 mg/kg) and nor-IBG (3 mg/kg) produced pain relief only in the presence of a sub-threshold dose of LY379268, a selective mGlu2 receptor agonist, indicating that signaling through both 5-HT2A and mGlu2 receptors improves efficacy. In the functional study using HEK293 cells co-expressing both 5-HT2A and mGlu2 receptors, Glu increased the apparent potency of ibogalogs in a concentration-dependent manner and sub-threshold concentrations of ibogalogs augmented the Glu-induced response through the mGlu2 receptor, which collectively indicate functional crosstalk between both receptors. Ibogalogs increased mGlu2 receptor phosphorylation on Ser843, a proposed key molecular event underlying the functional receptor crosstalk. Our study shows for the first time that diverse ibogalogs induce anti-neuropathic activity through a synergic mechanism involving both 5-HT2A and mGlu2 receptors.
AB - The objective of this study was to determine the anti-neuropathic activity of a variety of ibogalogs, including tabernanthalog (TBG), ibogaminalog (DM506), ibogainalog (IBG), nor-IBG, catharanthalog (CAG), and PNU-22394 using the oxaliplatin (OXA) neuropathic pain model in mice, and to investigate whether there is crosstalk between the 5-HT2A and mGlu2 receptors. All tested ibogalogs induce pain-relieving activity using both cold plate and paw pressure tests, without toxic effects. The most potent ibogalogs were IBG and CAG, whereas nor-IBG and DM506 were the longest-acting compounds. The anti-neuropathic activity of ibogalogs was inhibited by ketanserin, a 5-HT2A receptor antagonist, indicating a role for the 5-HT2A receptor for these effects. Sub-threshold doses of IBG (1 mg/kg) and nor-IBG (3 mg/kg) produced pain relief only in the presence of a sub-threshold dose of LY379268, a selective mGlu2 receptor agonist, indicating that signaling through both 5-HT2A and mGlu2 receptors improves efficacy. In the functional study using HEK293 cells co-expressing both 5-HT2A and mGlu2 receptors, Glu increased the apparent potency of ibogalogs in a concentration-dependent manner and sub-threshold concentrations of ibogalogs augmented the Glu-induced response through the mGlu2 receptor, which collectively indicate functional crosstalk between both receptors. Ibogalogs increased mGlu2 receptor phosphorylation on Ser843, a proposed key molecular event underlying the functional receptor crosstalk. Our study shows for the first time that diverse ibogalogs induce anti-neuropathic activity through a synergic mechanism involving both 5-HT2A and mGlu2 receptors.
KW - 5-HT and mGlu receptors
KW - ibogalogs
KW - Neuropathic pain
KW - oxaliplatin
KW - psychoplastogens
U2 - 10.1016/j.biopha.2025.117887
DO - 10.1016/j.biopha.2025.117887
M3 - Journal article
C2 - 39938347
AN - SCOPUS:85217410556
SN - 0753-3322
VL - 184
JO - Biomedicine and Pharmacotherapy
JF - Biomedicine and Pharmacotherapy
M1 - 117887
ER -