TY - UNPB
T1 - Imputation of ancient genomes
AU - da Mota, Barbara Sousa
AU - Rubinacci, Simone
AU - Dávalos, Diana Ivette Cruz
AU - Amorim, Carlos Eduardo G.
AU - Sikora, Martin
AU - Johannsen, Niels N.
AU - Szmyt, Marzena
AU - Włodarczak, Piotr
AU - Szczepanek, Anita
AU - Przybyła, Marcin M.
AU - Schroeder, Hannes
AU - Allentoft, Morten E.
AU - Willerslev, Eske
AU - Malaspinas, Anna-Sapfo
AU - Delaneau, Olivier
PY - 2022
Y1 - 2022
N2 - Due to postmortem DNA degradation, most ancient genomes sequenced to date have low depth of coverage, preventing the true underlying genotypes from being recovered. Genotype imputation has been put forward to improve genotyping accuracy for low-coverage genomes. However, it is unknown to what extent imputation of ancient genomes produces accurate genotypes and whether imputation introduces bias to downstream analyses. To address these questions, we downsampled 43 ancient genomes, 42 of which are high-coverage (above 10x) and three constitute a trio (mother, father and son), from different times and continents to simulate data with coverage in the range of 0.1x-2.0x and imputed these using state-of-the-art methods and reference panels. We assessed imputation accuracy across ancestries and depths of coverage. We found that ancient and modern DNA imputation accuracies were comparable. We imputed most of the 42 high-coverage genomes downsampled to 1x with low error rates (below 5%) and estimated higher error rates for African genomes, which are underrepresented in the reference panel. We used the ancient trio data to validate imputation and phasing results using an orthogonal approach based on Mendel’s rules of inheritance. This resulted in imputation and switch error rates of 1.9% and 2.0%, respectively, for 1x genomes. We further compared the results of downstream analyses between imputed and high-coverage genomes, notably principal component analysis (PCA), genetic clustering, and runs of homozygosity (ROH). For these three approaches, we observed similar results between imputed and high-coverage genomes using depths of coverage of at least 0.5x, except for African genomes, for which the decreased imputation accuracy impacted ROH estimates. Altogether, these results suggest that, for most populations and depths of coverage as low as 0.5x, imputation is a reliable method with potential to expand and improve ancient DNA studies.
AB - Due to postmortem DNA degradation, most ancient genomes sequenced to date have low depth of coverage, preventing the true underlying genotypes from being recovered. Genotype imputation has been put forward to improve genotyping accuracy for low-coverage genomes. However, it is unknown to what extent imputation of ancient genomes produces accurate genotypes and whether imputation introduces bias to downstream analyses. To address these questions, we downsampled 43 ancient genomes, 42 of which are high-coverage (above 10x) and three constitute a trio (mother, father and son), from different times and continents to simulate data with coverage in the range of 0.1x-2.0x and imputed these using state-of-the-art methods and reference panels. We assessed imputation accuracy across ancestries and depths of coverage. We found that ancient and modern DNA imputation accuracies were comparable. We imputed most of the 42 high-coverage genomes downsampled to 1x with low error rates (below 5%) and estimated higher error rates for African genomes, which are underrepresented in the reference panel. We used the ancient trio data to validate imputation and phasing results using an orthogonal approach based on Mendel’s rules of inheritance. This resulted in imputation and switch error rates of 1.9% and 2.0%, respectively, for 1x genomes. We further compared the results of downstream analyses between imputed and high-coverage genomes, notably principal component analysis (PCA), genetic clustering, and runs of homozygosity (ROH). For these three approaches, we observed similar results between imputed and high-coverage genomes using depths of coverage of at least 0.5x, except for African genomes, for which the decreased imputation accuracy impacted ROH estimates. Altogether, these results suggest that, for most populations and depths of coverage as low as 0.5x, imputation is a reliable method with potential to expand and improve ancient DNA studies.
U2 - 10.1101/2022.07.19.500636
DO - 10.1101/2022.07.19.500636
M3 - Preprint
BT - Imputation of ancient genomes
PB - bioRxiv
ER -