Abstract
We prove that the function g(x)=1/(1-cos(x)) is completely monotonic on (0,π] and absolutely monotonic on [π,2π), and we determine the best possible bounds λn and μn such that the inequalities (Formula presented.) and (Formula presented.) hold for all x,y∈(0,π) with x+y≤π.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Analysis Mathematica |
Vol/bind | 51 |
Udgave nummer | 1 |
Sider (fra-til) | 63-73 |
Antal sider | 11 |
ISSN | 0133-3852 |
DOI | |
Status | Udgivet - 2025 |
Bibliografisk note
Publisher Copyright:© The Author(s), under exclusive licence to Akadémiai Kiadó Zrt 2025.