TY - JOUR
T1 - Inhibition of myeloperoxidase- and neutrophil-mediated oxidant production by tetraethyl and tetramethyl nitroxides
AU - Kajer, Tracey B
AU - Fairfull-Smith, Kathryn E
AU - Yamasaki, Toshihide
AU - Yamada, Ken-ichi
AU - Fu, Shanlin
AU - Bottle, Steven E
AU - Hawkins, Clare Louise
AU - Davies, Michael Jonathan
N1 - Copyright © 2014 Elsevier Inc. All rights reserved.
PY - 2014/5
Y1 - 2014/5
N2 - The powerful oxidant HOCl (hypochlorous acid and its corresponding anion, (-)OCl) generated by the myeloperoxidase (MPO)-H2O2-Cl(-) system of activated leukocytes is strongly associated with multiple human inflammatory diseases; consequently there is considerable interest in inhibition of this enzyme. Nitroxides are established antioxidants of low toxicity that can attenuate oxidation in animal models, with this ascribed to superoxide dismutase or radical-scavenging activities. We have shown (M.D. Rees et al., Biochem. J. 421, 79-86, 2009) that nitroxides, including 4-amino-TEMPO (4-amino-2,2,6,6-tetramethylpiperidin-1-yloxyl radical), are potent inhibitors of HOCl formation by isolated MPO and activated neutrophils, with IC50 values of ~1 and ~6 µM respectively. The utility of tetramethyl-substituted nitroxides is, however, limited by their rapid reduction by biological reductants. The corresponding tetraethyl-substituted nitroxides have, however, been reported to be less susceptible to reduction. In this study we show that the tetraethyl species were reduced less rapidly than the tetramethyl species by both human plasma (89-99% decreased rate of reduction) and activated human neutrophils (62-75% decreased rate). The tetraethyl-substituted nitroxides retained their ability to inhibit HOCl production by MPO and activated neutrophils with IC50 values in the low-micromolar range; in some cases inhibition was enhanced compared to tetramethyl substitution. Nitroxides with rigid structures (fused oxaspiro rings) were, however, inactive. Overall, these data indicate that tetraethyl-substituted nitroxides are potent inhibitors of oxidant formation by MPO, with longer plasma and cellular half-lives compared to the tetramethyl species, potentially allowing lower doses to be employed.
AB - The powerful oxidant HOCl (hypochlorous acid and its corresponding anion, (-)OCl) generated by the myeloperoxidase (MPO)-H2O2-Cl(-) system of activated leukocytes is strongly associated with multiple human inflammatory diseases; consequently there is considerable interest in inhibition of this enzyme. Nitroxides are established antioxidants of low toxicity that can attenuate oxidation in animal models, with this ascribed to superoxide dismutase or radical-scavenging activities. We have shown (M.D. Rees et al., Biochem. J. 421, 79-86, 2009) that nitroxides, including 4-amino-TEMPO (4-amino-2,2,6,6-tetramethylpiperidin-1-yloxyl radical), are potent inhibitors of HOCl formation by isolated MPO and activated neutrophils, with IC50 values of ~1 and ~6 µM respectively. The utility of tetramethyl-substituted nitroxides is, however, limited by their rapid reduction by biological reductants. The corresponding tetraethyl-substituted nitroxides have, however, been reported to be less susceptible to reduction. In this study we show that the tetraethyl species were reduced less rapidly than the tetramethyl species by both human plasma (89-99% decreased rate of reduction) and activated human neutrophils (62-75% decreased rate). The tetraethyl-substituted nitroxides retained their ability to inhibit HOCl production by MPO and activated neutrophils with IC50 values in the low-micromolar range; in some cases inhibition was enhanced compared to tetramethyl substitution. Nitroxides with rigid structures (fused oxaspiro rings) were, however, inactive. Overall, these data indicate that tetraethyl-substituted nitroxides are potent inhibitors of oxidant formation by MPO, with longer plasma and cellular half-lives compared to the tetramethyl species, potentially allowing lower doses to be employed.
KW - Animals
KW - Antioxidants
KW - Cyclic N-Oxides
KW - Humans
KW - Hydrogen Peroxide
KW - Hypochlorous Acid
KW - Inflammation
KW - Neutrophil Activation
KW - Neutrophils
KW - Peroxidase
KW - Superoxide Dismutase
KW - Superoxides
U2 - 10.1016/j.freeradbiomed.2014.02.011
DO - 10.1016/j.freeradbiomed.2014.02.011
M3 - Journal article
C2 - 24566469
VL - 70
SP - 96
EP - 105
JO - Free Radical Biology & Medicine
JF - Free Radical Biology & Medicine
SN - 0891-5849
ER -