Abstract
Originalsprog | Engelsk |
---|---|
Tidsskrift | The FASEB Journal |
Vol/bind | 19 |
Udgave nummer | 9 |
Sider (fra-til) | 1181-3 |
Antal sider | 2 |
ISSN | 0892-6638 |
DOI | |
Status | Udgivet - 2005 |
Bibliografisk note
Keywords: Adult; Animals; Cytokine Receptor gp130; Exercise; Female; Humans; Interleukin-6; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Muscle, Skeletal; RNA, Messenger; Receptors, Interleukin-6Adgang til dokumentet
Citationsformater
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
Interleukin-6 receptor expression in contracting human skeletal muscle: regulating role of IL-6. / Keller, Pernille; Penkowa, Milena; Keller, Charlotte; Steensberg, Adam; Fischer, Christian P; Giralt, Mercedes; Hidalgo, Juan; Pedersen, Bente Klarlund.
I: The FASEB Journal, Bind 19, Nr. 9, 2005, s. 1181-3.Publikation: Bidrag til tidsskrift › Tidsskriftartikel › Forskning › peer review
}
TY - JOUR
T1 - Interleukin-6 receptor expression in contracting human skeletal muscle: regulating role of IL-6
AU - Keller, Pernille
AU - Penkowa, Milena
AU - Keller, Charlotte
AU - Steensberg, Adam
AU - Fischer, Christian P
AU - Giralt, Mercedes
AU - Hidalgo, Juan
AU - Pedersen, Bente Klarlund
N1 - Keywords: Adult; Animals; Cytokine Receptor gp130; Exercise; Female; Humans; Interleukin-6; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Muscle, Skeletal; RNA, Messenger; Receptors, Interleukin-6
PY - 2005
Y1 - 2005
N2 - Contracting muscle fibers produce and release IL-6, and plasma levels of this cytokine are markedly elevated in response to physical exercise. We recently showed autocrine regulation of IL-6 in human skeletal muscle in vivo and hypothesized that this may involve up-regulation of the IL-6 receptor. Therefore, we investigated IL-6 receptor regulation in response to exercise and IL-6 infusion in humans. Furthermore, using IL-6-deficient mice, we investigated the role of IL-6 in the IL-6 receptor response to exercise. Human skeletal muscle biopsies were obtained in relation to: 3 h of bicycle exercise and rest (n=6+5), or recombinant human IL-6 infusion (rhIL-6) or saline infusion (n=6+6). We further obtained skeletal muscle samples from IL-6 knockout (KO) mice and wild-type C57/BL-6 mice in response to a 1-h bout of exercise. In exercising human skeletal muscle, IL-6 receptor mRNA increased sixfold with a peak at 6 h postexercise. Detection of the IL-6 receptor protein by immunohistochemistry revealed a pronounced staining following exercise that was primarily located at the cell membrane of the muscle fibers, whereas muscle gp130 expression and plasma levels of soluble IL-6 receptor were unaffected. Infusion of rhIL-6 to humans had no effect on the mRNA level of the IL-6 receptor, whereas there was an increase at the protein level. IL-6 receptor mRNA increased similarly in muscle of both IL-6 KO mice and wild-type mice in response to exercise. In conclusion, exercise increases IL-6 receptor production in human skeletal muscle. This effect is most prominent 6 h after the end of the exercise bout, suggesting a postexercise-sensitizing mechanism to IL-6 when plasma IL-6 is concomitantly low. Exercise-induced increases in IL-6 receptor mRNA most likely occurs via an IL-6 independent mechanism as shown in IL-6 KO mice and the human rhIL-6 infusion study, whereas IL-6 receptor protein levels are responsive to elevated plasma IL-6 levels.
AB - Contracting muscle fibers produce and release IL-6, and plasma levels of this cytokine are markedly elevated in response to physical exercise. We recently showed autocrine regulation of IL-6 in human skeletal muscle in vivo and hypothesized that this may involve up-regulation of the IL-6 receptor. Therefore, we investigated IL-6 receptor regulation in response to exercise and IL-6 infusion in humans. Furthermore, using IL-6-deficient mice, we investigated the role of IL-6 in the IL-6 receptor response to exercise. Human skeletal muscle biopsies were obtained in relation to: 3 h of bicycle exercise and rest (n=6+5), or recombinant human IL-6 infusion (rhIL-6) or saline infusion (n=6+6). We further obtained skeletal muscle samples from IL-6 knockout (KO) mice and wild-type C57/BL-6 mice in response to a 1-h bout of exercise. In exercising human skeletal muscle, IL-6 receptor mRNA increased sixfold with a peak at 6 h postexercise. Detection of the IL-6 receptor protein by immunohistochemistry revealed a pronounced staining following exercise that was primarily located at the cell membrane of the muscle fibers, whereas muscle gp130 expression and plasma levels of soluble IL-6 receptor were unaffected. Infusion of rhIL-6 to humans had no effect on the mRNA level of the IL-6 receptor, whereas there was an increase at the protein level. IL-6 receptor mRNA increased similarly in muscle of both IL-6 KO mice and wild-type mice in response to exercise. In conclusion, exercise increases IL-6 receptor production in human skeletal muscle. This effect is most prominent 6 h after the end of the exercise bout, suggesting a postexercise-sensitizing mechanism to IL-6 when plasma IL-6 is concomitantly low. Exercise-induced increases in IL-6 receptor mRNA most likely occurs via an IL-6 independent mechanism as shown in IL-6 KO mice and the human rhIL-6 infusion study, whereas IL-6 receptor protein levels are responsive to elevated plasma IL-6 levels.
U2 - 10.1096/fj.04-3278fje
DO - 10.1096/fj.04-3278fje
M3 - Journal article
C2 - 15837717
VL - 19
SP - 1181
EP - 1183
JO - F A S E B Journal
JF - F A S E B Journal
SN - 0892-6638
IS - 9
ER -