Invariant Policy Learning: A Causal Perspective

Sorawit Saengkyongam, Nikolaj Thams, Jonas Peters, Niklas Pfister

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

3 Citationer (Scopus)
14 Downloads (Pure)

Abstract

Contextual bandit and reinforcement learning algorithms have been successfully used in various interactive learning systems such as online advertising, recommender systems, and dynamic pricing. However, they have yet to be widely adopted in high-stakes application domains, such as healthcare. One reason may be that existing approaches assume that the underlying mechanisms are static in the sense that they do not change over different environments. In many real-world systems, however, the mechanisms are subject to shifts across environments which may invalidate the static environment assumption. In this paper, we take a step toward tackling the problem of environmental shifts considering the framework of offline contextual bandits. We view the environmental shift problem through the lens of causality and propose multi-environment contextual bandits that allow for changes in the underlying mechanisms. We adopt the concept of invariance from the causality literature and introduce the notion of policy invariance. We argue that policy invariance is only relevant if unobserved variables are present and show that, in that case, an optimal invariant policy is guaranteed to generalize across environments under suitable assumptions.

OriginalsprogEngelsk
TidsskriftIEEE Transactions on Pattern Analysis and Machine Intelligence
Vol/bind45
Udgave nummer7
Sider (fra-til)8606-8620
Antal sider15
ISSN0162-8828
DOI
StatusUdgivet - 2023

Bibliografisk note

Publisher Copyright:
IEEE

Citationsformater