@article{fa3175e3731d47d9aed52967efedb0d8,
title = "Investigating the melting behaviour of polymorphic zeolitic imidazolate frameworks",
abstract = "Recently, there has been growing interest in the amorphous states of metal-organic frameworks (MOFs). Particular focus has been given to melt-quenched MOF glasses. In this work, to improve our understanding of the factors influencing melting, the thermal response of four closely related zeolitic imidazolate frameworks (ZIFs) was studied. Electron withdrawing ligands were found to lower both the melting and glass transition temperatures, providing a promising strategy for improving the processability of MOFs in the liquid state. Crucially, dense frameworks appear to be essential for melting, with their presence also initiating the melting of open pore frameworks. This opens up the rich polymorphic landscape of ZIFs to the preparation of novel MOF liquids and glasses.",
author = "Bumstead, {Alice M.} and {R{\'i}os G{\'o}mez}, {Mar{\'i}a Laura} and Thorne, {Michael F.} and Sapnik, {Adam F.} and Louis Longley and Tuffnell, {Joshua M.} and Keeble, {Dean S.} and Keen, {David A.} and Bennett, {Thomas D.}",
note = "Funding Information: A. M. B. acknowledges the Royal Society for funding (RGF\EA\180092) as well as the Cambridge Trust for a Vice Chancellor's Award (304253100). M. L. R. G. acknowledges project funding PAPIIT IG100618. M. F. T. would like to thank Corning Incorporated for PhD funding and project guidance. A. F. S. acknowledges the EPSRC for a PhD studentship under the industrial CASE scheme along with Johnson Matthey PLC (JM11106). L. L. acknowledges an EPSRC studentship. J. M. T. acknowledges funding from NanoDTC ESPSRC Grant EP/L015978/1. T. D. B. thanks the Royal Society for both a University Research Fellowship (UF150021) and a research grant (RSG\R1\180395). T. D. B. also gratefully acknowledges the EPSRC (EP/R015481/1), and the University of Canterbury Te Whare Wananga o Waitaha, New Zealand, for a University of Cambridge Visiting Canterbury Fellowship. We extend our gratitude to Diamond Light Source, Rutherford Appleton Laboratory, U.K., for access to beamline I15-1 (EE20038-2). Funding Information: A. M. B. acknowledges the Royal Society for funding (RGF\EA\180092) as well as the Cambridge Trust for a Vice Chancellor's Award (304253100). M. L. R. G. acknowledges project funding PAPIIT IG100618. M. F. T. would like to thank Corning Incorporated for PhD funding and project guidance. A. F. S. acknowledges the EPSRC for a PhD studentship under the industrial CASE scheme along with Johnson Matthey PLC (JM11106). L. L. acknowledges an EPSRC studentship. J. M. T. acknowledges funding from NanoDTC ESPSRC Grant EP/ L015978/1. T. D. B. thanks the Royal Society for both a University Research Fellowship (UF150021) and a research grant (RSG\R1\180395). T. D. B. also gratefully acknowledges the EPSRC (EP/R015481/1), and the University of Canterbury Te Whare Wānanga o Waitaha, New Zealand, for a University of Cambridge Visiting Canterbury Fellowship. We extend our gratitude to Diamond Light Source, Rutherford Appleton Laboratory, U.K., for access to beamline I15-1 (EE20038-2). Publisher Copyright: {\textcopyright} The Royal Society of Chemistry 2020.",
year = "2020",
month = jun,
day = "7",
doi = "10.1039/d0ce00408a",
language = "English",
volume = "22",
pages = "3627--3637",
journal = "CrystEngComm",
issn = "1466-8033",
publisher = "Royal Society of Chemistry",
number = "21",
}