Abstract
Depression is one of the most prevalent and debilitating psychiatric disorders worldwide. Recently, we showed that both relatively short and relatively long cytosine–adenine–guanine (CAG) repeats in the huntingtin gene (HTT) are associated with an increased risk of lifetime depression. However, to what extent the variations in CAG repeat length in the other eight polyglutamine disease-associated genes (PDAGs) are associated with depression is still unknown. We determined the CAG repeat sizes of ATXN1, ATXN2, ATXN3, CACNA1A, ATXN7, TBP, ATN1 and AR in two well-characterized Dutch cohorts—the Netherlands Study of Depression and Anxiety and the Netherlands Study of Depression in Older Persons—including 2165 depressed and 1058 non-depressed individuals—aged 18–93 years. The association between PDAG CAG repeat size and the risk for depression was assessed via binary logistic regression. We found that the odds ratio (OR) for lifetime depression was significantly higher for individuals with >10, compared with subjects with ≤10, CAG repeats in both ATXN7 alleles (OR=1.90, confidence interval (CI) 1.26–2.85). For TBP we found a similar association: A CAG repeat length exceeding the median in both alleles was associated with an increased risk for lifetime depression (OR=1.33, CI 1.00–1.76). In conclusion, we observed that carriers of either ATXN7 or TBP alleles with relatively large CAG repeat sizes in both alleles had a substantially increased risk of lifetime depression. Our findings provide critical evidence for the notion that repeat polymorphisms can act as complex genetic modifiers of depression.
Originalsprog | Engelsk |
---|---|
Artikelnummer | e1143 |
Tidsskrift | Translational Psychiatry |
Vol/bind | 7 |
Sider (fra-til) | 1-7 |
Antal sider | 7 |
ISSN | 2158-3188 |
DOI | |
Status | Udgivet - 6 jun. 2017 |