Leucine as a Moisture-Protective Excipient in Spray-Dried Protein/Trehalose Formulation

Chengqian Zhang, Marco van de Weert, Simon Bjerregaard, Jukka Rantanen, Mingshi Yang*

*Corresponding author af dette arbejde

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Abstract

The incorporation of leucine (Leu), a hydrophobic amino acid, into pharmaceutically relevant particles via spray-drying can improve the physicochemical and particulate properties, stability, and ultimately bioavailability of the final product. More specifically, Leu has been proposed to form a shell on the surface of spray-dried (SD) particles. The aim of this study was to explore the potential of Leu in the SD protein/trehalose (Tre) formulation to control the water uptake and moisture-induced recrystallization of amorphous Tre, using lysozyme (LZM) as a model protein. LZM/Tre (1:1, w/w) was dissolved in water with varied amounts of Leu (0 - 40%, w/w) and processed by spray-drying. The solid form, residual moisture content (RMC), hygroscopicity, and morphology of SD LZM/Tre/Leu powders were evaluated, before and after storage under 22°C/55% RH conditions for 90 and 180 days. The X-ray powder diffraction results showed that Leu was in crystalline form when the amount of Leu in the formulation was at least 20% (w/w). Thermo-gravimetric analysis and scanning electron microscopy results showed that 0%, 5%, and 10% (w/w) Leu formulations led to comparable RMC and raisin-like round particles. In contrast, higher Leu contents resulted in a lower RMC and increased surface corrugation of the SD particles. Dynamic vapor sorption analysis showed that partial recrystallization of amorphous Tre to crystalline Tre·dihydrate occurred in the 0% Leu formulation. However, adding as little as 5% (w/w) Leu inhibited this recrystallization during the water sorption/desorption cycle. In addition, after storage, the formulations with higher Leu contents showed reduced water uptake. Instead of observing recrystallization of amorphous Tre in 0%, 5%, and 10% (w/w) Leu formulations, recrystallization of amorphous Leu was noted in the 5% and 10% (w/w) Leu formulations after storage. In summary, our study demonstrated that the addition of Leu has the potential to reduce water uptake and inhibit moisture-induced recrystallization of amorphous Tre in the SD protein/Tre powder system.

OriginalsprogEngelsk
TidsskriftJournal of Pharmaceutical Sciences
Vol/bind113
Udgave nummer9
Sider (fra-til)2764-2774
ISSN0022-3549
DOI
StatusUdgivet - 2024

Bibliografisk note

Copyright © 2024 American Pharmacists Association. Published by Elsevier Inc. All rights reserved.

Citationsformater