TY - JOUR
T1 - Lifetime monogamy and the evolution of eusociality
AU - Boomsma, Jacobus J
N1 - Keywords: Animals; Evolution; Hymenoptera; Selection, Genetic; Sexual Behavior, Animal; Social Behavior
PY - 2009
Y1 - 2009
N2 - All evidence currently available indicates that obligatory sterile eusocial castes only arose via the association of lifetime monogamous parents and offspring. This is consistent with Hamilton's rule (br(s) > r(o)c), but implies that relatedness cancels out of the equation because average relatedness to siblings (r(s)) and offspring (r(o)) are both predictably 0.5. This equality implies that any infinitesimally small benefit of helping at the maternal nest (b), relative to the cost in personal reproduction (c) that persists throughout the lifespan of entire cohorts of helpers suffices to establish permanent eusociality, so that group benefits can increase gradually during, but mostly after the transition. The monogamy window can be conceptualized as a singularity comparable with the single zygote commitment of gametes in eukaryotes. The increase of colony size in ants, bees, wasps and termites is thus analogous to the evolution of multicellularity. Focusing on lifetime monogamy as a universal precondition for the evolution of obligate eusociality simplifies the theory and may help to resolve controversies about levels of selection and targets of adaptation. The monogamy window underlines that cooperative breeding and eusociality are different domains of social evolution, characterized by different sectors of parameter space for Hamilton's rule.
AB - All evidence currently available indicates that obligatory sterile eusocial castes only arose via the association of lifetime monogamous parents and offspring. This is consistent with Hamilton's rule (br(s) > r(o)c), but implies that relatedness cancels out of the equation because average relatedness to siblings (r(s)) and offspring (r(o)) are both predictably 0.5. This equality implies that any infinitesimally small benefit of helping at the maternal nest (b), relative to the cost in personal reproduction (c) that persists throughout the lifespan of entire cohorts of helpers suffices to establish permanent eusociality, so that group benefits can increase gradually during, but mostly after the transition. The monogamy window can be conceptualized as a singularity comparable with the single zygote commitment of gametes in eukaryotes. The increase of colony size in ants, bees, wasps and termites is thus analogous to the evolution of multicellularity. Focusing on lifetime monogamy as a universal precondition for the evolution of obligate eusociality simplifies the theory and may help to resolve controversies about levels of selection and targets of adaptation. The monogamy window underlines that cooperative breeding and eusociality are different domains of social evolution, characterized by different sectors of parameter space for Hamilton's rule.
U2 - 10.1098/rstb.2009.0101
DO - 10.1098/rstb.2009.0101
M3 - Journal article
C2 - 19805427
VL - 364
SP - 3191
EP - 3207
JO - Philosophical Transactions of the Royal Society B: Biological Sciences
JF - Philosophical Transactions of the Royal Society B: Biological Sciences
SN - 0962-8436
IS - 1533
ER -