Abstract
A local exclusion principle is observed for identical particles obeying intermediate/fractional exchange statistics in one and two dimensions, leading to bounds for the kinetic energy in terms of the density. This has implications for models of Lieb-Liniger and Calogero-Sutherland type, and implies a non-trivial lower bound for the energy of the anyon gas whenever the statistics parameter is an odd numerator fraction. We discuss whether this is actually a necessary requirement.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Annales Henri Poincare |
Vol/bind | 15 |
Udgave nummer | 6 |
Sider (fra-til) | 1061-1107 |
ISSN | 1424-0637 |
DOI | |
Status | Udgivet - jun. 2014 |