TY - JOUR
T1 - Low-dose fentanyl does not alter muscle sympathetic nerve activity, blood pressure, or tolerance during progressive central hypovolemia
AU - Huang, Mu
AU - Watso, Joseph C
AU - Belval, Luke N
AU - Cimino, Frank A
AU - Fischer, Mads
AU - Jarrard, Caitlin P
AU - Hendrix, Joseph M
AU - Hinojosa-Laborde, Carmen
AU - Crandall, Craig G
N1 - CURIS 2022 NEXS 009
PY - 2022
Y1 - 2022
N2 - Hemorrhage is a leading cause of battlefield and civilian trauma deaths. Several pain medications, including fentanyl, are recommended for use in the prehospital (i.e., field setting) for a hemorrhaging solider. However, it is unknown whether fentanyl impairs arterial blood pressure (BP) regulation, which would compromise hemorrhagic tolerance. Thus, the purpose of this study was to test the hypothesis that an analgesic dose of fentanyl impairs hemorrhagic tolerance in conscious humans. Twenty-eight volunteers (13 females) participated in this double-blinded, randomized, placebo-controlled trial. We conducted a pre-syncopal limited progressive lower-body negative pressure test (LBNP; a validated model to simulate hemorrhage) following intravenous administration of fentanyl (75 µg) or placebo (saline). We quantified tolerance as a cumulative stress index (mmHg•min), which was compared between trials using a paired, two-tailed t test. We also compared muscle sympathetic nerve activity (MSNA; microneurography) and beat-to-beat BP (photoplethysmography) during the LBNP test using a mixed effects model (time [LBNP stage] x trial). LBNP tolerance was not different between trials (Fentanyl: 647 ± 386 vs. Placebo: 676 ± 295 mmHg•min, P = 0.61, Cohen's d = 0.08). Increases in MSNA burst frequency (time: P < 0.01, trial: P = 0.29, interaction: P = 0.94) and reductions in mean BP (time: P < 0.01, trial: P = 0.50, interaction: P = 0.16) during LBNP were not different between trials. These data, the first to be obtained in conscious humans, demonstrate that administration of an analgesic dose of fentanyl does not alter MSNA or BP during profound central hypovolemia, nor does it impair tolerance to this simulated hemorrhagic insult.
AB - Hemorrhage is a leading cause of battlefield and civilian trauma deaths. Several pain medications, including fentanyl, are recommended for use in the prehospital (i.e., field setting) for a hemorrhaging solider. However, it is unknown whether fentanyl impairs arterial blood pressure (BP) regulation, which would compromise hemorrhagic tolerance. Thus, the purpose of this study was to test the hypothesis that an analgesic dose of fentanyl impairs hemorrhagic tolerance in conscious humans. Twenty-eight volunteers (13 females) participated in this double-blinded, randomized, placebo-controlled trial. We conducted a pre-syncopal limited progressive lower-body negative pressure test (LBNP; a validated model to simulate hemorrhage) following intravenous administration of fentanyl (75 µg) or placebo (saline). We quantified tolerance as a cumulative stress index (mmHg•min), which was compared between trials using a paired, two-tailed t test. We also compared muscle sympathetic nerve activity (MSNA; microneurography) and beat-to-beat BP (photoplethysmography) during the LBNP test using a mixed effects model (time [LBNP stage] x trial). LBNP tolerance was not different between trials (Fentanyl: 647 ± 386 vs. Placebo: 676 ± 295 mmHg•min, P = 0.61, Cohen's d = 0.08). Increases in MSNA burst frequency (time: P < 0.01, trial: P = 0.29, interaction: P = 0.94) and reductions in mean BP (time: P < 0.01, trial: P = 0.50, interaction: P = 0.16) during LBNP were not different between trials. These data, the first to be obtained in conscious humans, demonstrate that administration of an analgesic dose of fentanyl does not alter MSNA or BP during profound central hypovolemia, nor does it impair tolerance to this simulated hemorrhagic insult.
KW - Faculty of Science
KW - Opioids
KW - Sympathoexcitatory
KW - Respiration
KW - Cerebral tissue oxygenation
U2 - 10.1152/ajpregu.00217.2021
DO - 10.1152/ajpregu.00217.2021
M3 - Journal article
C2 - 34851734
VL - 322
SP - R55-R63
JO - American Journal of Physiology
JF - American Journal of Physiology
SN - 0363-6119
IS - 1
ER -